Abstract:
A driverless testing system for a vehicle driven along a predefined route situated in a location remote from a ground station control station includes one or more ground station controllers located at the ground station control station that are in wireless communication with a plurality of actuators, one or more field sensors, and a plurality of vehicle instrumentation sensors by a network. The one or more ground station controllers execute instructions to instruct the plurality of actuators drive the vehicle along the predefined route based on a vehicle test pattern and monitor the plurality of vehicle instrumentation sensors for a plurality of operating parameters of the vehicle. In response to detecting one or more of the operating parameters of the vehicle are compromised, the one or more ground station controllers select an alternative state of operation of the vehicle.
Abstract:
Systems and methods for controlling an autonomous vehicle are described. A trajectory planner module provides a first trajectory to a trajectory control module. The trajectory control module determines parameters of the first trajectory. The trajectory control module compares the parameters to a respective threshold value. The trajectory control module obtains one or more alternative trajectories, determines parameters of each alternative trajectory, and compares the parameters of the alternative trajectory to a respective threshold value. The trajectory control module selects a trajectory for controlling the autonomous vehicle that has parameters which are within a range defined by the threshold values and controls the autonomous vehicle based on the selected trajectory. Thus, before handing back control to a driver, the trajectory control module selects from alternate trajectories for controlling the autonomous vehicle.
Abstract:
An automotive vehicle includes a vehicle-based charging unit including a receiving unit configured to receive power from a ground-based charging unit, the receiving unit including a multi-coil receiver, a first actuator operably coupled to the vehicle-based charging unit and configured to adjust a first position of the vehicle-based charging unit relative to the ground-based charging unit, and a controller configured to selectively actuate the first actuator. The controller is configured to receive first performance indicator data indicating a first alignment between the charging units, determine an alignment error between the charging units and calculate a first position adjustment of the vehicle-based charging unit, automatically control the first actuator to implement the first position adjustment of the vehicle-based charging unit, and receive second performance indicator data indicating a second alignment between the charging units, the second alignment resulting in a desired power transfer efficiency between the charging units.
Abstract:
A method and apparatus that determine parking feasibility are provided. The method includes determining a charging pad location based on information received from sensors or the charging pad, generating a path function corresponding to a path from a vehicle position to the charging pad location, determining whether a vehicle is within a parking maneuver feasibility region by comparing values of the generated path function, a minimum turning radius of the vehicle, and a maximum steering angle rate of the vehicle, and moving the vehicle to the charging pad location if the vehicle is in the parking maneuver feasibility region.
Abstract:
Systems, methods and apparatuses for motion control for an autonomous vehicle by implementing an adaptive skeleton construct interface with models, including: a first model which uses constructs for lateral control from a set of a plurality of constructs; and a second model which uses constructs for longitudinal control from a set of a plurality of constructs; and a path reconciling module for reconciling a path based on vehicle data to validate a path for operation and for implementing one or more of a set of lateral or longitudinal controls without having to re-create another lateral control or longitudinal control set, by selecting one or more of an already created lateral or longitudinal control sets to implement one or more sets of the plurality of constructs for vehicle control.
Abstract:
Autonomous control of a subject vehicle including a longitudinal motion control system includes determining states of parameters associated with a trajectory for the subject vehicle and parameters associated with a control reference determined for the subject vehicle. A range control routine is executed to determine a first parameter associated with a range control command based upon the states of the plurality of parameters, and a speed control routine is executed to determine a second parameter associated with a speed control command based upon the states of the plurality of parameters. An arbitration routine is executed to evaluate the range control command and the speed control command, and operation of the subject vehicle is controlled to achieve a desired longitudinal state, wherein the desired longitudinal state is associated with a minimum of the range control command and the speed control command.
Abstract:
A method is provided for autonomously operating a vehicle. The method includes receiving, at a processor, at least vehicle state data and vehicle object environment data; generating, with the processor, an optimal path for the vehicle with a cost function based on the vehicle state data and the vehicle object environment data; identifying, with the processor, at least one critical condition constraint based on at least one of the vehicle or vehicle environment; modifying, with the processor, at least a first portion of the optimal path based on the at least one critical condition constraint to result in a short-range trajectory portion; generating a resulting trajectory with the short-range trajectory portion; and implementing the resulting trajectory on the vehicle.
Abstract:
A method for providing vehicle lateral steering control. The method includes providing a mathematical model of vehicle dynamics that includes a state variable, a steering control variable and a future road disturbance factor that defines the upcoming road curvature, banks and slopes of the roadway. The method determines an optimal steering control signal that includes a feedback portion and a feed-forward portion, where the feed-forward portion includes the road disturbance factor. The method determines a state variable and a control variable for the current roadway curvature, bank and slope for stationary motion of the vehicle for constant speed, yaw rate and lateral velocity. The method then introduces a new state variable and control variable for dynamic vehicle motion for variable speed, yaw rate and lateral velocity that is a difference between the state and control variables for predicted future times and the steady state variables.
Abstract:
A method of providing automatic collision avoidance in a vehicle with a front wheel electric power steering (EPS) system and rear wheel active rear steering (ARS) system and an automatic collision avoidance system are described. The method includes generating a vehicle math model including the control variables, designing a steering control goal as a criterion to determine the control variables, and implementing a model predictive control to solve the steering control goal and determine the control variables. The method also includes providing the control variables to the EPS system and the ARS system to respectively control a front actuator associated with front wheels and a rear actuator associated with rear wheels.
Abstract:
A method for calculating a virtual target path around a target object that includes providing scan points identifying detected objects and separating the scan points into target object scan points and other object scan points. The method identifies a closest scan point from the target object scan points and identifies a path point that is a predetermined safe distance from the closest scan point. The method determines a straight target line adjacent to the target object that goes through the path point, and determines a distance between the target line and each of the other objects and determines whether all of the distances are greater than a predetermined threshold distance. The method identifies curve points for each other object whose distance is less than the predetermined threshold distance, and identifies a curve path that connects the curve points to be the virtual target path using a quadratic polynomial function.