Abstract:
This application discloses a camera including a holding element and a base assembly. The holding element further includes a camera portion for holding a camera sensor, an extended portion that extends from the camera portion, and a fastener structure coupled to an end of the extended portion located opposite another end of the extended portion where the camera module is located. The base assembly further includes a base shaped to rest against a supporting surface, a joint structure configured to mate with the fastener structure, and a magnet configured to magnetically couple the camera to the supporting surface. In some implementations, the camera further includes a mounting structure that is configured to be attached and fixed onto the supporting surface. The camera is mounted onto the supporting surface when the base of the base assembly magnetically adheres onto the mounting structure.
Abstract:
A stand assembly for an electronic device includes a neck portion with a first end that holds and extends from the electronic device, a spine portion that is coupled via a joint structure to a second end of the neck portion, the joint structure being configured to provide a first rotational degree of freedom of the neck portion with respect to the spine portion, and one or more interconnect wires. The one or more interconnect wires include a first wire portion, a second wire portion and a third wire portion, the first wire portion being routed through an interior of the neck portion, the second wire portion being routed along a surface of the spine portion, and the third wire portion being routed though the joint structure from the surface of the spine portion to the interior of the neck portion.
Abstract:
A stand assembly for an electronic device includes a neck portion with a first end that holds and extends from the electronic device, a spine portion that is coupled via a joint structure to a second end of the neck portion, the joint structure being configured to provide a first rotational degree of freedom of the neck portion with respect to the spine portion, and one or more interconnect wires. The one or more interconnect wires include a first wire portion, a second wire portion and a third wire portion, the first wire portion being routed through an interior of the neck portion, the second wire portion being routed along a surface of the spine portion, and the third wire portion being routed though the joint structure from the surface of the spine portion to the interior of the neck portion.
Abstract:
This application discloses a stand assembly that includes a receiving element for physically receiving a module, and a base assembly for supporting the receiving element. The receiving element further includes a module holding structure, an extended portion, and a first fastener structure coupled to an end of the extended portion. The base assembly includes a base, and a second fastener structure coupled to the base at a joint and configured to mate with the first fastener structure. The first fastener structure and the joint are configured to respectively provide a first degree of freedom of motion and a second degree of freedom of motion of the receiving element with respect to the base. The movement of the receiving element at the first degree of freedom has substantially consistent resistance through first part of a first full range of motion associated with the first degree of freedom of motion.
Abstract:
This application discloses a stand assembly that includes a receiving element for physically receiving a module, and a base assembly for supporting the receiving element. The receiving element further includes a module holding structure, an extended portion, and a first fastener structure coupled to an end of the extended portion. The base assembly includes a base, and a second fastener structure coupled to the base at a joint and configured to mate with the first fastener structure. The first fastener structure and the joint are configured to respectively provide a first degree of freedom of motion and a second degree of freedom of motion of the receiving element with respect to the base. The movement of the receiving element at the first degree of freedom has substantially consistent resistance through first part of a first full range of motion associated with the first degree of freedom of motion.
Abstract:
This application discloses a method of preparing an assembly. A base assembly is provided and includes a base, and a second fastener structure coupled to the base at a joint. The base assembly is then attached to a receiving element that is configured to physically receive a module and includes a first fastener structure, when the first fastener structure is fastened onto the second fastener structure until the first fastener structure reaches a tightened position. After the first fastener structure reaches the tightened position, the receiving element is rotated reversely at the first degree of freedom of motion by a first angle to orient the receiving element to a nominal position. At the nominal position, the receiving element and the module received thereby are configured to face substantially up when they are flipped down via the joint at the second degree of freedom of motion.
Abstract:
This application discloses an electronic device including a cooling structure and a plurality of electrical components. The cooling structure is made from a thermally conductive material, and has an exterior surface, an interior surface and a hollow portion defined by the interior surface. The exterior surface is configured to radiate away heat generated within the hollow portion that is transmitted from the interior surface to the exterior surface. The electrical components are contained within the hollow portion. Heat generated by the electrical components during operation of the electronic device is carried away by the cooling structure. In some implementations, the exterior surface includes a base form and a plurality of surface features that project away from the base form, and the surface features are physically configured to form a helical structure that wraps around the cooling structure and increases rate of thermal radiation from the exterior surface.
Abstract:
This application discloses a stand assembly that includes a receiving element for physically receiving a module, and a base assembly for supporting the receiving element. The receiving element further includes a module holding structure, an extended portion, and a first fastener structure coupled to an end of the extended portion. The base assembly includes a base, and a second fastener structure coupled to the base at a joint and configured to mate with the first fastener structure. The first fastener structure and the joint are configured to respectively provide a first degree of freedom of motion and a second degree of freedom of motion of the receiving element with respect to the base. The movement of the receiving element at the first degree of freedom is unlimited in a first direction of travel associated with the first degree of freedom.
Abstract:
This application discloses a method of preparing an assembly. A base assembly is provided and includes a base, and a second fastener structure coupled to the base at a joint. The base assembly is then attached to a receiving element that is configured to physically receive a module and includes a first fastener structure. The first fastener structure is fastened with the second fastener structure and provides a first degree of freedom of motion of the receiving element with respect to the base, and the movement of the receiving element is unlimited in a first direction of travel associated with the first degree of freedom of motion. The receiving element is rotated along the first direction of travel until the receiving element reaches a nominal position at which the receiving element and the module received thereby are configured to face substantially up when they are flipped down via the joint.
Abstract:
The various implementations described herein include methods, devices, and systems for illuminating and capturing scenes. In one aspect, a video camera assembly includes: (1) one or more processors configured to operate the video camera assembly in a day mode and in a night mode; (2) an image sensor having a field of view of a scene and configured to capture video of a first portion of the scene while in the day mode of operation and in the night mode of operation, the first portion corresponding to the field of view of the image sensor; (3) one or more infrared (IR) illuminators configured to provide illumination during the night mode of operation while the image sensor captures video; and (4) an IR reflector component configured to: (i) substantially restrict the illumination onto the first portion of the scene, and (ii) illuminate the first portion in a substantially uniform manner across the field of view of the image sensor.