Abstract:
A rubber valve body for sealed battery includes a rubber composition containing a resin in an amount of 20% by mass or more and an inorganic substance, wherein the melting point of the resin is in a range of 100 to 165° C.
Abstract:
A lithium secondary battery is produced by employing a charging method where a positive electrode upon charging has a maximum achieved potential of 4.3 V (vs. Li/Li+) or lower. The lithium secondary battery contains an active material including a solid solution of a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure. The solid solution has a diffraction peak observed near 20 to 30° in X-ray diffractometry using CuKα radiation for a monoclinic Li[Li1/3Mn2/3]O2-type before charge-discharge. The lithium secondary battery is charged to reach at least a region with substantially flat fluctuation of potential appearing in a positive electrode potential region exceeding 4.3 V (vs. Li/Li+) and 4.8 V (vs. Li/Li+) or lower. A dischargeable electric quantity in a potential region of 4.3 V (vs. Li/Li+) or lower is 177 mAh/g or higher.
Abstract:
A rubber valve body for sealed battery includes a rubber composition containing a resin in an amount of 20% by mass or more and an inorganic substance, wherein the melting point of the resin is in a range of 100 to 165° C.
Abstract:
An energy storage device including a spiral electrode group in which a first electrode plate and a second electrode plate having polarity reverse to that of the first electrode plate are spirally wound with a separator interposed therebetween, wherein the second electrode plate is opposed to an inner circumference and an outer circumference of the first electrode plate, portions of the separator are reinforced, the reinforced portions of the separator include a first reinforced portion formed between a winding-start end of the first electrode plate and the second electrode plate located on a radially outer side of the winding-start end, and a second reinforced portion formed between the winding-start end of the first electrode plate and the second electrode plate located on a radially inner side of the winding-start end, and the first reinforced portion and the second reinforced portion are arranged apart from each other.
Abstract:
An energy storage device including a spiral electrode group in which a first electrode plate and a second electrode plate having polarity reverse to that of the first electrode plate are spirally wound with a separator interposed therebetween, wherein the second electrode plate is opposed to an inner circumference and an outer circumference of the first electrode plate, portions of the separator are reinforced, the reinforced portions of the separator include a first reinforced portion formed between a winding-start end of the first electrode plate and the second electrode plate located on a radially outer side of the winding-start end, and a second reinforced portion formed between the winding-start end of the first electrode plate and the second electrode plate located on a radially inner side of the winding-start end, and the first reinforced portion and the second reinforced portion are arranged apart from each other.