摘要:
A propagating method is provided in which timing and servo sector information is propagated throughout a data storage media that initially contains only a guide pattern. The method uses an offset between the write element and the read element in a read/write head to position and propagate the timing information. In addition, a method for circumferentially aligning timing and servo sector information is disclosed that utilizes a time delay to position the propagated timing and servo sector information. Another method for attenuating timing errors during timing and servo sector propagation to a data storage media is disclosed. Timing errors are attenuated through the use of phase locked loop circuit and measurement of the phase error detected between different tracks on the data storage media. Apparatuses implementing the methods including a storage device readable by a computer system that implements the methods are provided.
摘要:
In a disk drive, a modified adaptive runout compensation algorithm is employed to measure non-coherent repeatable runout (RRO) of a track. The adaptive runout compensation algorithm is used to control the transducer head to follow the average RRO of adjacent tracks during the process of computing correction factors for non-coherent RRO for a given track. The adaptive runout compensation algorithm does not completely adapt to both the coherent and non-coherent RRO of a particular track because the transducer head is positioned over any one particular track for only a limited number of revolutions.
摘要:
Certifying a media while servowriting the media by formatting a full compliment of servo data in storage tracks of the media in a minimum number of passes per storage track while simultaneously performing a 100% media certification of the storage tracks during the minimum number of passes per storage track.
摘要:
Certifying a media while servowriting the media by formatting a full compliment of servo data in storage tracks of the media in a minimum number of passes per storage track while simultaneously performing a 100% media certification of the storage tracks during the minimum number of passes per storage track.
摘要:
Producing a servo pattern on a media involves rotating a master, and during a first revolution of the master, forming a first transition at a first radial position on the master, and forming a first transition at a second radial position. During a second revolution of the master, a second transition at the first radial position is formed, and a second transition at the second radial position is formed. By exposing individual servo burst transitions located at the first and second radial positions, in separate disk revolutions, only one of the magnetic transitions will inherit a particular deflection from a nominal radial position. If there are any mechanical disturbances, each magnetic transition will be randomly displaced from its nominal position, reducing the written-in run-out by √n, where n is the number of magnetic transitions in a particular servo burst.
摘要:
Certifying a storage media while servowriting the media by formatting a full compliment of servo data in storage tracks of the media in a minimum number of passes per storage track while simultaneously performing a 100% media certification of the storage tracks during the minimum number of passes per storage track.
摘要:
A compensation element (317) in a feedforward line in a dual stage control system for a data storage system compensates for the undesired transient motion of a first positioning element (i.e., a coarse actuator). The compensation element is a transfer function that is applied from the first positioning element's control signal (Uv) to a second positioning elements's (306) (i.e., microactuator's) input. The transfer function is defined as formula (I) where ^Vnom (z) is a transfer function model of the nominial portion of the first positioning element, ^Vres (z) is a transfer function model of the resonance portion of the first positioning element, and ^M(z) is a transfer function model of the dynamics of the second positioning element. This feedforward transfer function effectively cancels the resonances of the first positioning element without requiring the inversion of the resonance transfer function.
摘要:
Radial correction factors are calculated for each ruler on a patterned media in a data storage system. A ruler is a position-sensing pattern that defines the radial position of a recording head. Rulers are patterned onto each disk before the disks are assembled into a storage system. The radial correction factors are then added to the measured position information during read and/or write operations of the data storage system. The radial correction factors correct for any radial misalignment created by disturbances in the data storage system. Circumferential correction factors are calculated for each patterned media in the data storage system. A corrected sector number is then determined by redefining the original sector numbers using the circumferential correction factors.
摘要:
Many parallel tracks on a storage surface of a data handling device are arranged in a longitudinal direction. Each track has a track center comprising reference points for fine lateral positioning. Each successive pair of track centers has a succession of lateral offset distance having an average. Because there are many successive pairs of tracks, there are many average lateral offset distances defining a statistical distribution having a variance. The device includes a laterally movable transducer head and a longitudinally movable data surface. A signal is received from the transducer head while the data surface moves past the head. Many values each indicative of a lateral offset distance between a corresponding pair of lateral reference points are derived from the received signal. These offset-indicative values are used to shift at least some of the latitudinal reference points laterally so as to reduce this variance.
摘要:
The present invention proposes a new servo track writing technique called Extended Copying with Head Offset (“ECHO”). The read and write elements of the read/write head are offset from each other. A servo writer writes a guide pattern on the magnetic media disc. ZAP correction factors are added to the guide pattern. The head disc assembly is then connected to an electrical control system for self-propagating servo writing. The actuator arm is displaced until the read head is aligned over the guide pattern. A new servo track is written by the write element. ZAP correction factors are added to the newly written servo track. The actuator arm is displaced until the read element is aligned with the newly written servo track. A new servo track is written. ZAP correction factors are added to the newly written servo track. The process is repeated until a desired number of servo tracks are written.