摘要:
A circuit for dynamically monitoring the operation of an integrated circuit under differing temperature, frequency, and voltage (including localized noise and droop), and for detecting early life wear-out mechanisms (e.g., NBTI, hot electrons).
摘要:
A circuit for dynamically monitoring the operation of an integrated circuit under differing temperature, frequency, and voltage (including localized noise and droop), and for detecting early life wear-out mechanisms (e.g., NBTI, hot electrons).
摘要:
A critical path monitor having selectable data output modes provides additional information about critical path delay variation. A pulse is propagated through a synthesized path representing a critical path in a functional logic circuit and a synthesized path delay is measured by a monitoring circuit that detects the arrival of an edge of the pulse at the output of the synthesized delay. The measured delay is provided as a real-time output and a processed result of the measured delay is processed according to a data output mode selected from multiple selectable output modes, thereby providing different information describing the real-time data about critical path delay, such as a range of edge positions corresponding to a variation of the critical path delay.
摘要:
A critical path monitor having selectable data output modes provides additional information about critical path delay variation. A pulse is propagated through a synthesized path representing a critical path in a functional logic circuit and a synthesized path delay is measured by a monitoring circuit that detects the arrival of an edge of the pulse at the output of the synthesized delay. The measured delay is provided as a real-time output and a processed result of the measured delay is processed according to a data output mode selected from multiple selectable output modes, thereby providing different information describing the real-time data about critical path delay, such as a range of edge positions corresponding to a variation of the critical path delay.
摘要:
A performance control technique for a processing system that includes one or more adaptively-clocked processor cores provides improved performance/power characteristics. An outer feedback loop adjusts the power supply voltage(s) provided to the power supply voltage domain(s) powering the core(s), which may be on a per-core basis or include multiple cores per voltage domain. The outer feedback loop operates to ensure that each core is meeting specified performance, while the cores also include an inner feedback loop that adjusts their processor clock or other performance control mechanism to maximize performance under present operating conditions and within a margin of safety. The performance of each core is measured and compared to a target performance. If the target performance is not met for each core in a voltage domain, the voltage is raised for the voltage domain until all cores meet the target performance.
摘要:
A mechanism is provided for minimizing power consumption for operation of a fixed-frequency processing unit. A number of timeslots are counted in a time window where throttling is engaged to the fixed-frequency processing unit. The number of timeslots where throttling is engaged is divided by a total number of timeslots within the time window, thereby producing a performance loss (PLOSS) value. A determination is made as to whether determining whether the (PLOSS) value associated with the fixed-frequency processing unit is greater than an allowed performance loss (APLOSS) value. Responsive to the PLOSS value being less than or equal to the APLOSS value, a decrease in voltage supplied to the fixed-frequency processing unit is initiated.
摘要:
A mechanism is provided for minimizing power consumption for operation of a fixed-frequency processing unit. A number of timeslots are counted in a time window where throttling is engaged to the fixed-frequency processing unit. The number of timeslots where throttling is engaged is divided by a total number of timeslots within the time window, thereby producing a performance loss (PLOSS) value. A determination is made as to whether determining whether the (PLOSS) value associated with the fixed-frequency processing unit is greater than an allowed performance loss (APLOSS) value. Responsive to the PLOSS value being less than or equal to the APLOSS value, a decrease in voltage supplied to the fixed-frequency processing unit is initiated.
摘要:
A performance control technique for a processing system that includes one or more adaptively-clocked processor cores provides improved performance/power characteristics. An outer feedback loop adjusts the power supply voltage(s) provided to the power supply voltage domain(s) powering the core(s), which may be on a per-core basis or include multiple cores per voltage domain. The outer feedback loop operates to ensure that each core is meeting specified performance, while the cores also include an inner feedback loop that adjusts their processor clock or other performance control mechanism to maximize performance under present operating conditions and within a margin of safety. The performance of each core is measured and compared to a target performance. If the target performance is not met for each core in a voltage domain, the voltage is raised for the voltage domain until all cores meet the target performance.
摘要:
A method is provided for managing power distribution on a three-dimensional chip stack having two or more strata, a plurality of vertical power delivery structures, and multiple stack components. At least two stack components are on different strata. Operating modes are stored that respectively have different power dissipations. A respective effective power budget is determined for each of the at least two stack components based on respective ones of the operating modes targeted therefor, and power characteristics and thermal characteristics of at least some of the stack components inclusive or exclusive of the at least two stack components. The respective ones of the plurality of operating modes targeted for the at least two stack components are selectively accepted or re-allocated based on the respective effective power budget for each of the at least two stack components, power constraints, and thermal constraints. The power constraints include vertical structure electrical constraints.
摘要:
A mechanism is provided for minimizing power consumption for operation of a fixed-frequency processing unit. A number of timeslots are counted in a time window where throttling is engaged to the fixed-frequency processing unit. The number of timeslots where throttling is engaged is divided by a total number of timeslots within the time window, thereby producing a performance loss (PLOSS) value. A determination is made as to whether determining whether the (PLOSS) value associated with the fixed-frequency processing unit is greater than an allowed performance loss (APLOSS) value. Responsive to the PLOSS value being less than or equal to the APLOSS value, a decrease in voltage supplied to the fixed-frequency processing unit is initiated.