摘要:
A communication device transmits and receives communication signals with another communication device via a plurality of antennas, a plurality of transmit tapped delay-line filters, a plurality of receive tapped delay-line filters, a combiner/analyzer with a plurality of filters for signal processing; and a plurality of computation blocks. The computation blocks determine complex weights for the tapped delay-line filters for optimizing the received signal-to-noise ratio and the range of communication of the communication device.
摘要:
Systems and methods for optimizing the efficiency of each of a plurality of power amplifiers that amplify a corresponding one of a plurality of radio frequency signals for transmission by a corresponding one of a plurality of antennas. Using transmit beamforming, the power of each amplified signal output by the power amplifiers may not be the same for all the power amplifiers, and may vary with changes in the communication channel between the transmitting device and receiving device. Each of the plurality of power amplifiers is controlled to operate with one or more operating parameters that optimize the efficiency for an output power level of corresponding ones of the radio frequency signals. By adjusting one or more operating parameters of each power amplifier according to changing requirements (e.g., the destination device and channel conditions), the efficiency of each power amplifier can be optimized. Consequently, one or more of the power amplifiers are operated with one or more operating parameters that reflects the output power actually needed for the corresponding radio frequency signal to be transmitted.
摘要:
A radio transmitter and method controls efficiency of each of a plurality of power amplifiers that amplify a corresponding one of a plurality of radio frequency signals for a beamforming transmission by a corresponding one of a plurality of antennas. Each of the plurality of power amplifiers is controlled to operate with one or more operating parameters that optimize the efficiency for an output power level of corresponding ones of the radio frequency signals. Transmit weights for transmit signals are determined and updated on a per-packet basis.
摘要:
Multiple-input multiple-output (MIMO) wireless communication techniques are provided that involve mapping multiple spatial streams to corresponding modes of a wireless channel between a plurality of antennas of a first wireless communication device and a plurality of antennas of a second wireless communication device so as to allocate or distribute power unequally to the plurality of modes. In addition, techniques are provided herein to cyclically shift a mapping of spatial streams to modes of the channel.
摘要:
An equal gain composite beamforming technique which includes the constraint that the power of the signal output by each antenna is the same, and is equal to the total power of the transmit signal divided by the number N of transmit antennas from which the signal is to be transmitted. By reducing output power requirements for each power amplifier, the silicon area of the power amplifiers are reduced by as much as N times (where N is equal to the number of transmit antennas) relative to a non-equal gain composite beamforming technique.
摘要:
A radio transmitter and method controls efficiency of each of a plurality of power amplifiers that amplify a corresponding one of a plurality of radio frequency signals for a beamforming transmission by a corresponding one of a plurality of antennas. Each of the plurality of power amplifiers is controlled to operate with one or more operating parameters that optimize the efficiency for an output power level of corresponding ones of the radio frequency signals. Transmit weights for transmit signals are determined and updated on a per-packet basis.
摘要:
Techniques to correct for phase and amplitude mismatches in a radio device in order to maintain channel symmetry when communicating with another device using MIMO radio communication techniques. Correction for the amplitude and phase mismatches among the plurality of transmitters and plurality of receivers of a device may be made at baseband using digital logic (such as in the modem) in the receiver path, the transmitter path or both paths of that device. In a device, amplitude and phase offsets are determined among the plurality of radio transmitter and radio receiver paths by measuring phase and amplitude responses when supplying a signal to a transmitter in a first antenna path of the device and coupling the radio signal from a first antenna to a second antenna path of that device where the signal is downconverted by a receiver associated with the second antenna path, and similarly coupling a signal from the second antenna path to the first antenna path. Measurements are obtained between the first antenna path and each of the other antenna paths when coupling a signal in both directions between them. Phase and amplitude offset correction values are computed from the phase and amplitude measurements during a self-calibration operation or mode of the device, and are used during a run-time operation or mode when processing the baseband transmit and/or receive signals to compensate for the phase and amplitude offsets among the plurality of transceiver paths of a device. Amplitude offset correction may not be necessary (or optional) for certain radio implementations or MIMO radio algorithms. The device may execute the self-calibration mode on device power-up, and then periodically thereafter. Self-calibration may also be performed at the factory on a device.
摘要:
A system, method and device for MIMO radio communication of multiple signals between a first device having N plurality of antennas and a second device having M plurality of antennas. At the first device, a vector s representing L signals [s1 . . . sL] to be transmitted is processed with a transmit matrix A to maximize capacity of the channel between the first device and the second device subject to a power constraint that the power emitted by each of the N antennas is less than or equal to a maximum power. The power constraint for each antenna may be the same for all antennas or specific or different for each antenna. For example, the power constraint for each antenna may be equal to a total maximum power emitted by all of the N antennas combined divided by N. The transmit matrix A distributes the L signals [s1 . . . sL] among the N plurality of antennas for simultaneous transmission to the second device. At the second device, the signals received by the M plurality of antennas are processed with receive weights and the resulting signals are combined to recover the L signals.
摘要:
A composite beamforming technique is provided wherein a first communication device has a plurality of antennas and the second communication has a plurality of antennas. When the first communication device transmits to the second communication device, the transmit signal is multiplied by a transmit weight vector for transmission by each the plurality of antennas and the transmit signals are received by the plurality of antennas at the second communication device. The second communication device determines the best receive weight vector for the its antennas, and from that vector, derives a suitable transmit weight vector for transmission on the plurality of antennas back to the first communication device. Several techniques are provided to determine the optimum transmit weight vector and receive weight vector for communication between the first and second communication devices so that there is effectively joint or composite beamforming between the communication devices.
摘要:
An extended range mode for wireless communication of a multicast data signal from an access point (AP) to multiple stations (STAs) may be enabled or disabled. When the extended range mode is enabled, the AP transmits the data signal up to a total of N times using a transmit delay diversity, where N is the number of transmit antennas.