Abstract:
Devices, systems, and method are provided for processing requests for items to be pre-gathered from a store, the processing of the requests is executed using one or more processing entities. One method includes receiving tracking data from portable device associated with a user having an online account with the store. One or more items are identified from a shopping list of the user as associated with the online account of the store. Processing the tracking data is made to determine a current route of the portable device to the store. Sending instructions is processed to create a task for pre-gathering one or more items from the store. The sending of instructions is triggered in response to confirming that the current route of the portable device remains headed to the store. The method also includes receiving an indicator that the one or more items from the store have been gathered. The method causes the sending of a notification to the online account of the user that a package of said one or more items from the store that were ordered have been gathered and are ready for pickup at the store.
Abstract:
A device is provided that includes a persistent memory, a microcontroller and a power source configured to generate power in response to energy harvesting. The power is transferred to a power storage of the device such that when the power storage has an amount of power the microcontroller performs processing of a part of a task resulting in state data related to the task stored to the persistent memory in response to a first cycle of energy harvesting. In response to one or more additional cycles of energy harvesting, the device continues performance of the task by retrieving the state data for the part of the task from the persistent memory and resulting in assembly of a payload that comprises an update to software running on the device.
Abstract:
Devices, systems, and method are provided for tracking items in a store for processing a cashier-less purchase transaction. In one example, a method includes identifying a shopper in a store using sensors and associating the shopper to a shopping account. Monitoring the shopper in the store using one or more sensors, and output of the one or more sensors is an input to one or more deep learning models that generate classification data in connection with a scenario. The method includes receiving natural language voice input containing words spoken from the shopper. And, processing the voice input along with the classification data to generate a response to the words spoken by said shopper. The response is made in a context of the scenario.
Abstract:
A hand-held electronic device, method of operation and computer readable medium are disclosed. The device may include a case having one or more major surfaces. A visual display and a touch pad are disposed on at least one of the major surfaces. A processor is operably coupled to the visual display and touch screen. Instructions executable by the processor may be configured to: a) present an image on the visual display containing one or more active elements; b) divide the image into one or more regions that fill the display, wherein each region corresponds to a different active element; c) correlating an active element in the image on the visual display to a corresponding active portion of the touch interface; and d) activate one of the one or more active elements in response to a touch to a corresponding one of the active portions of the touch interface.
Abstract:
Devices, systems, and method are provided for wireless coded communication (WCC) devices, which are configured for wireless communication with other devices, e.g., over a network. A WCC device is a type of internet of things (IOT) device that can sense data, process data, send data, respond to data requests and exchange data with other WCC device, a network device, a user device, and/or systems over the internet. In some configurations, a WCC device may include a power source that enables usage of low power, e.g., to send data that is sensed, request data and/or communicate data wirelessly. WCC devices maybe function as standalone devices or may be integrated into other devices. In some configurations, a WCC device may include power harvesting circuitry, including power harvesting user controls. A WCC device may be pre-configured or coded to report occurrence of an event, log an event, log state, cause an action, send a message or request data from one or more end nodes. In some configurations, the devices enable communication over a wireless network, which enables access to the Internet and further enables cloud processing on data received or processing for data returned or communicated.
Abstract:
Devices, systems, and method are provided for wireless coded communication (WCC) devices, which are configured for wireless communication with other devices, e.g., over a network. A WCC device is a type of internet of things (JOT) device that can sense data, process data, send data, respond to data requests and exchange data with other WCC device, a network device, a user device, and/or systems over the internet. In some configurations, a WCC device may include a power source that enables usage of low power, e.g., to send data that is sensed, request data and/or communicate data wirelessly. WCC devices maybe function as standalone devices or may be integrated into other devices. In some configurations, a WCC device may include power harvesting circuitry, including power harvesting user controls. A WCC device may be pre-configured or coded to report occurrence of an event, log an event, log state, cause an action, send a message or request data from one or more end nodes. In some configurations, the devices enable communication over a wireless network, which enables access to the Internet and further enables cloud processing on data received or processing for data returned or communicated.
Abstract:
Increasing a number of advertising impressions in a system configured to facilitate user interaction with an interactive environment containing one or more advertising targets is described. A scene of a portion of the simulated environment is displayed from a camera point of view (camera POV) on a video display. The scene may change as the camera POV changes in response to movement of the camera POV along a camera path during the user's interaction with the simulated environment. Modifying the camera path or a camera field of view can place more of an advertising target within the scene displayed on the video display to increase a likelihood of generating an advertising impression compared to a likelihood of generating an advertising impression without the modification.
Abstract:
Real-time participation within a media presentation is disclosed. A participant overlay may be generated by preprocessing a media presentation to extract a time-variant metadata stream associated with one or more interactive regions depicted in the media presentation. The participant overlay includes simulated physics, which may include boundaries of the interactive regions defined in accordance with content in said media presentation. A participant's interaction with said media presentation through the interactive regions may be captured and combined with the media presentation for display on a display. The interaction may comprise a user action upon one or more elements in the media presentation, a user action expressed in the media presentation through an avatar, or a user action in said media presentation in connection with a game element.
Abstract:
A method for use in obtaining input data from an object includes capturing a live image of the object with an image capture device, receiving information related to a tilt angle of the object from one or more sensors other than the image capture device, using the information related to a tilt angle of the object to obtain at least one rotated reference image of the object, comparing the live image of the object with the rotated reference image of the object, and generating an indication in response to the live image matching the rotated reference image. An apparatus and a storage medium storing a computer program executable by a processor based system are also disclosed.
Abstract:
Computer implemented methods for interactively modifying a video image are provided. The video image can be transmitted between a first user and a second user using a computer program that is executed on at least one computer in a computer network. Additionally, the first user and the second user interact through respective computing systems that at least partially execute the computer program. A video capture system is provided that is interfaced with the computer program that can be used to capture real-time video of the first user. The method continues by identifying components of the video image of the first user that can be modified using real-time effects in the captured real-time video. In another operation, the method identifies controller input from either the first user or the second user. The controller input detected by the computing system is identified to determine which of the identified components of the first user will be modified. In response to the identified controller input, another operation of the method augments the real-time video captured of the first user by applying the real-time effects to the identified components of the first user. The method then displays the augmented real-time video of the first user on a screen connected to the computing system of one or both of the first and second users.