Systems and methods for predicting optimal deep brain stimulation parameters

    公开(公告)号:US11273310B2

    公开(公告)日:2022-03-15

    申请号:US16253430

    申请日:2019-01-22

    Abstract: A system and method for optimizing parameters of a DBS pulse signal for treatment of a patient is provided. In predicting optimal DBS parameters, functional brain data is input into a predictor system, the functional brain data acquired responsive to a sweeping across a multi-dimensional parameter space of one or more DBS parameters. Statistical metrics of brain response are extracted from the functional brain data for one or more ROIs or voxels of the brain via the predictor system, and a DBS functional atlas is accessed, via the predictor system, that comprises disease-specific brain response maps derived from DBS treatment at optimal DBS parameter settings for a plurality of diseases or neurological conditions. One or more optimal DBS parameters are predicted for the patient based on the statistical metrics of brain response and the DBS functional atlas via the predictor system.

    System and method for predicting an excitation pattern of a deep brain stimulation

    公开(公告)号:US10390766B2

    公开(公告)日:2019-08-27

    申请号:US15406907

    申请日:2017-01-16

    Abstract: A system and method for predicting an excitation pattern of a deep brain stimulation (DBS) from monitored bioelectrical signals includes an apparatus having a housing having a signal input and a signal output and an electrical circuit disposed within the housing. The electrical circuit is electrically coupled between the signal input and the signal output and is configured to receive bioelectrical signals corresponding to an excitation signal transmitted by a pulse generator during a DBS. The electrical circuit is also configured to convert the bioelectrical signals into digital logic pulses, predict a future timing pattern of the excitation signal from the digital logic pulses, and generate an output from the future timing pattern, the output comprising a log of time stamps predictive of future active transmission periods of neurological excitation.

    System and method for localization of deep brain stimulation electrode via magnetic resonance imaging

    公开(公告)号:US10543361B2

    公开(公告)日:2020-01-28

    申请号:US15899594

    申请日:2018-02-20

    Abstract: A system and method for localizing a deep brain stimulation electrode in vivo in a subject or object is provided. A magnetic resonance imaging system obtains MR image data from a volume-of-interest by way of a zero echo time (ZTE) or ultrashort echo time (UTE) pulse sequence, with one or more of a phase domain image and a magnitude domain image being analyzed from the MR image data acquired by the ZTE or UTE pulse sequence. One or more electrodes are localized within the volume-of-interest based on an analysis of the phase domain image and/or magnitude domain image. In localizing the electrodes, a multi-scale correlation-based analysis of the volume-of-interest is performed to estimate at least one of an electrode center and electrode contact locations of the electrode, with the localization being achieved with a fast scan-time and with a high level of accuracy and precision.

    SYSTEMS AND METHODS FOR PREDICTING OPTIMAL DEEP BRAIN STIMULATION PARAMETERS

    公开(公告)号:US20200230414A1

    公开(公告)日:2020-07-23

    申请号:US16253430

    申请日:2019-01-22

    Abstract: A system and method for optimizing parameters of a DBS pulse signal for treatment of a patient is provided. In predicting optimal DBS parameters, functional brain data is input into a predictor system, the functional brain data acquired responsive to a sweeping across a multi-dimensional parameter space of one or more DBS parameters. Statistical metrics of brain response are extracted from the functional brain data for one or more ROIs or voxels of the brain via the predictor system, and a DBS functional atlas is accessed, via the predictor system, that comprises disease-specific brain response maps derived from DBS treatment at optimal DBS parameter settings for a plurality of diseases or neurological conditions. One or more optimal DBS parameters are predicted for the patient based on the statistical metrics of brain response and the DBS functional atlas via the predictor system.

Patent Agency Ranking