Abstract:
Various embodiments include a system and method that provide fetal visualization. The method can include acquiring, by an ultrasound system, ultrasound data for a region of interest. The method may include computing, by a processor of the ultrasound system, a fetal measurement based on the acquired ultrasound data. The method can include generating, by the processor, a graphical model based on one or more of the fetal measurement and the acquired ultrasound data. The method may include displaying, at a display system, the computed fetal measurement and the generated graphical model.
Abstract:
A method for automatically monitoring fetal head descent in a birth canal is presented. The method includes segmenting each image in one or more images into a plurality of neighborhood components, determining a cost function corresponding to each neighborhood component in the plurality of neighborhood components in each of the one or more images, identifying at least two structures of interest in each image in the one or more images based on the cost function, wherein the at least two structures of interest include a pubic ramus and a fetal head, measuring an angle of progression based on the at least two structures of interest, and determining the fetal head descent in the birth canal based on the angle of progression.
Abstract:
Methods and systems are provided for selecting a two dimensional (2D) scan plane. The methods and systems acquire ultrasound data along first and second 2D planes from a matrix array probe. The second 2D plane includes an anatomical structure. The first 2D plane extending along the azimuth direction and the second 2D plane extending along the elevation direction. The systems and methods further identify when the anatomical structure is symmetric along the second 2D plane with respect to a characteristic of interest, and select select ultrasound data along the first 2D plane when the anatomical structure is symmetric.
Abstract:
A processor identifies a first set of characteristic models of a structure in cross-plane images acquired at a first acquisition period. The processor identifies a second set of characteristic models of the structure in cross-plane images acquired at a second subsequent acquisition period. The processor determines an amount of rotation of the structure based at least in part on a difference in shape of the first set of characteristic models and the second set of characteristic models. The system and method may include determining a labor progress based at least in part on the determined amount of rotation of the structure. The structure may be a fetal head. The cross-plane images acquired at the first acquisition period may be acquired simultaneously by a single ultrasound device. The cross-plane images acquired at the second subsequent acquisition period may be acquired simultaneously by a single ultrasound device.