摘要:
The present invention is predicated on applicants' discovery that an appropriately spaced and dimensioned internal gap cladding can substantially reduce short wavelength cladding mode loss in a fiber Bragg grating. A fiber Bragg grating is provided with a ring of closely spaced, longitudinally extending gap regions in the glass peripherally surrounding the core. The gaps are spaced apart by thin glass webs having a thickness less than a wavelength of the light being transmitted and are disposed peripherally about the core at a distance of 2-10 wavelengths from the core center. The thin webs limit the passage of the light between the gaps. The combination of webs and gaps acts as an internal thin cladding which supports fewer cladding modes than conventional glass cladding and, significantly, provides increased wavelength spacing between the Bragg resonance and the first cladding mode resonance.
摘要:
The specification describes a wavelength monitoring system for multiple wavelength communications systems, such as WDM systems, based on the recognition that the mechanism for spatially separating the individual wavelength bands can be achieved within the optical fiber itself. Individual wavelength bands are separated using a series of discrete gratings spaced longitudinally along the fiber core. The wavelength bands are extracted from the fiber core by converting the energy in the selected band from a core-guided mode to a radiation mode. By using a tilted grating, the light in the radiation mode is directed through the cladding and out of the fiber. Spatial resolution of the selected bands can be any desired physical length. An important implication of this is that detection can be made in the near field using inexpensive detecting apparatus. Near field is defined for convenience in this case as the optical field of the radiated energy without any optically modifying elements (collimating devices, diffraction elements, mirrors, etc.). This eliminates nearly all of the optics, and the attendant expense, in prior art monitoring systems.
摘要:
Embodiments of the invention include system for monitoring the effectiveness of pulse shaping in a nonlinear optical fiber (40). The spectral content of the pulse, after passing through the nonlinear fiber (40), provides an indication of how effectively the pulse was regenerated. A portion of the pulse exiting the nonlinear fiber is tapped off and its pulse energy is measured in at least one selected spectral region. The selected spectral region is one in which the pulse tends to gain energy when effective regeneration is taking place. The information concerning the effectiveness of pulse shaping in a nonlinear optical fiber is fed back to dynamically change the residual dispersion at the regenerator input. The spectral measurement leads to a control signal (48) to indicate a level of performance of the system, or to improve the performance of the system by adjusting an operational parameter.
摘要:
In accordance with the invention, the fabrication of a grating phase mask is improved by providing a multiple-scan exposure which can provide an accumulated exposure that is effectively phase modulated or modulated rapidly in amplitude. Applicants have determined that exposure scans can be chosen so that each is modulated in amplitude and without modulation in phase, but the accumulated exposure of the multiple scans is modulated in phase and/or modulated in amplitude. The improved method can be used to make phase masks for fabrication of sophisticated fiber gratings such as superstructure gratings.
摘要:
A grating fabrication process utilizes real-time measurement of a grating characteristic (such as, for example, grating period chirp, reflectivity, group delay) as a feedback error signal to modify the writing process and improve the characteristics of the finished grating. A test beam is launched through the optical medium during the writing process (or at the end of an initial writing process) and a particular characteristic is measured and used to generate a “corrective” apodization refractive index profile that can be incorporated with the grating to improve its characteristics. The improvements may be applied to a phase (or amplitude) mask used to write the grating (etching, local deformation, coating changes, for example), or the grating itself may be corrected using additional UV exposure, non-uniform annealing, non-uniform heating, and/or non-uniform tension—these techniques applied separately or in an intermittent sequence. The utilization of a “closed loop” grating fabrication process provides the ability to form gratings with finely tuned characteristics.
摘要:
A Raman distributed feedback (DFB) fiber laser is disclosed. It includes a pump source and a Raman gain fiber of a length smaller than 20 cm containing a distributed feedback (DFB) grating with a discrete phase structure located within no more than 10% off the center of the grating and wherein the Raman DFB fiber laser generates a laser signal with an optical spectrum, which has an optical bandwidth at half maximum optical intensity of less than 1 gigahertz (GHz) (wherein a maximum intensity frequency is different from the frequency of the pump laser). The Raman laser includes compensation for the nonlinear phase change due to Kerr effect and thermal effect resulting from absorption of the optical field, thus enhancing the conversion efficiency.
摘要:
Described are optical devices and related methods wherein a multiple mode input in a Higher Order Mode (an HOM) optical fiber is converted by a complex mode transformer to produce a fundamental mode output in an optical medium with an E-field that is substantially different than that exiting the HOM optical fiber. The medium is preferably a Large Mode Area (LMA) optical fiber, or free space. The mode transformer may be a series of refractive index perturbations created either by photo-induced gratings or by gratings formed by physical deformations of the optical fiber.
摘要:
An optical continuum source is formed that is used to generate both a continuum and one or more light peaks outside the bandwidth of the continuum. In particular, one or more fiber Bragg gratings exhibiting a resonant wavelength less than the short wavelength edge (or greater than the long wavelength edge) of a predetermined continuum are inscribed into a section of highly nonlinear fiber (HNLF) and used to generate the additional light peaks. Gratings may also be formed for areas along the fiber where the continuum spectral power density is essentially “zero”. It has been discovered that the use of a Bragg grating generates phase matching with the propagating optical signal, thus resulting in the creation of the additional peaks.
摘要:
In accordance with the present invention, a bulk optic material (for example, silica) is processed to form a spatially microstructured element, such as a photonic bandgap (PBG) structure. An ultra-short laser pulse source is used as an input signal that is applied to the bulk optic PBG structure to generate an enhanced continuum output. The PBG structure may comprise any type of one-, two- or three-dimensional grating structure, where the selected structure will dictate the type(s) of enhancement(s) that are present in the generated continuum—generally in the form of a broadened continuum and/or the inclusion of one or peaks in the continuum. The use of a relatively small-dimensioned bulk material allows for the continuum to be generated without the need for any type of optical confinement (waveguide). In one embodiment, the bulk PBG structure may be is subjected to one or more additional processes (such as UV exposure, electromagnetic field application, etc.) to modify the nonlinearity of the bulk optic material, in one case resulting in the reduction of the inherent chromatic dispersion and enhancement of the generated continuum.
摘要:
A method and system for measuring chromatic dispersion, experienced by ASK/PSK modulated optical signals, are provided. Dispersion measurement is enabled either by encoding an additional overhead at lower baud rate or by monitoring signal SOP or RF spectrum of signal SOP. The bulk chromatic dispersion of the link is measured by analyzing the dispersion broadening of the overhead constellation or signal temporal diagram, or time-overlapped signal diagram, or overhead spectrum. This information is used to reduce the computation time required for electronic recovery of a highly dispersed signal.