摘要:
In a process for producing a semiconductor chip, a functional semiconductor layer sequence (2) is grown epitaxially on a growth substrate (1). Then, a separating zone (4), which lies parallel to a main surface (8) of the growth substrate (1), is formed in the growth substrate (1) by ion implantation, the ion implantation taking place through the functional semiconductor layer sequence (2). Then, a handle substrate (6) is applied to the functional semiconductor layer sequence (2), and a part of the growth substrate (1) which is remote from the handle substrate (6) as seen from the separating zone (4), is detached along the separating zone (4).
摘要:
A light-emitting diode chip (1), in which over a substrate (2), a series of epitaxial layers (3) with a radiation-emitting active structure (4) based on InGaN is disposed. Between the substrate (2) and the active structure (4), a buffer layer (20) is provided. The material or materials of the buffer layer (20) are selected such that their epitaxial surface (6) for the epitaxy of the active structure (4) is unstressed or slightly stressed at their epitaxial temperature. The active structure (4) has In-rich zones (5), disposed laterally side by side relative to the epitaxial plane, in which zones the In content is higher than in other regions of the active structure (4). A preferred method for producing the chip is disclosed.
摘要:
A composite substrate (1) comprising a substrate body (2) and a utility layer (31) fixed on the substrate body (2). A planarization layer (4) is arranged between the utility layer (31) and the substrate body (2). A method for producing a composite substrate (1) applies a planarization layer (4) on a provided utility substrate (3). The utility substrate (3) is fixed on a substrate body (2) for the composite substrate (1). The utility substrate (3) is subsequently separated, wherein a utility layer (31) of the utility substrate (3) remains for the composite substrate (1) on the substrate body (2).
摘要:
A composite substrate (1) comprising a substrate body (2) and a utility layer (31) fixed on the substrate body (2). A planarization layer (4) is arranged between the utility layer (31) and the substrate body (2). A method for producing a composite substrate (1) applies a planarization layer (4) on a provided utility substrate (3). The utility substrate (3) is fixed on a substrate body (2) for the composite substrate (1). The utility substrate (3) is subsequently separated, wherein a utility layer (31) of the utility substrate (3) remains for the composite substrate (1) on the substrate body (2).
摘要:
Disclosed are a method of fabricating a quasi-substrate wafer with a subcarrier wafer and a growth layer, and a semiconductor body fabricated using such a quasi-substrate wafer. In the method of fabricating a quasi-substrate wafer, a growth substrate water is fabricated that is provided with a separation zone and comprises the desired material of the growth layer. The growth substrate wafer is provided with a stress that counteracts a stress generated by the formation of the separation zone, and/or the stress generated by the formation of the separation zone is distributed, by structuring a first main race of the growth substrate water and/or the separation zone, to a plurality of subregions along the first main face. The growth substrate wafer with separation zone exhibits no or only slight bowing.