Abstract:
Vehicle having a wheel suspension, a wheel (1) to be driven, which is connected to the vehicle using the wheel suspension (40), and having an electric motor (20). The vehicle also comprises a bevel gear pair (30), which is directly connected to the wheel (1) and has a fixed gear reduction, and a shaft (42), which is situated between the electric motor (20) and the bevel gear pair (30) so that the electric motor (20) is connected by means of drive technology to the wheel (1) using the shaft (42) and the bevel gear pair (30). The fastening of the electric motor (20) on the vehicle is designed so that the electric motor (20) is essentially decoupled by means of movement technology from wheel movements (B2) of the wheel (1).
Abstract:
A device for measuring a rotationally symmetric precision part, having a dog, drivable via a drive, and a revolving centering means, the dog and the revolving centering means being positioned in such a way that a rotationally symmetric precision part to be measured may be non-positively clamped coaxially between dog and centering means. A first angle measuring system is assigned to the dog, which provides signals that permit the drive-side angular position of the dog to be stated, and a further angle measuring system is assigned to the revolving centering means, which provides signals that permit the output-side angular position of the centering means to be stated. Software means are provided which determine slip between the dog and the rotationally symmetric precision part through a comparative calculation on the basis of the drive-side angular position and the output-side angular position.
Abstract:
A scanning head for completely measuring gears and gearlike workpieces on numerically controlled measuring instruments must also posses 3-D properties for scanning unknown contours. To that end, the scanning pin or probe must deflect of its own accord in the currently prevailing direction normal to the contour being scanned. Only those scanning heads, whose behavior is statically and dynamically the same in all arbitrary deflection directions, can do this. The new scanning head achieves this by providing, for the three spatial coordinates X, Y, Z, two leaf spring parallelograms (1, 2) attached one behind the other to the stationary scanning head base (4). The first parallelogram (1), which is pivotable about the horizontal axis, permits deflections of the scanning pin carrier (3) in the XZ plane and the second parallelogram (2) permits deflections in the Y direction. Through this decoupling, achieved by means of connecting element (15) and the double-jointed rods (26), the displaced mass can be sufficiently close to being equally great in all arbitrary deflection directions. Preferably, the new scanning head is so constructed that, if desired, a predeterminable deflection direction in the XZ plane can be imparted to the scanning pin carrier (3) by means of a rotatable device (30).
Abstract:
Device and method for positioning a precision part on a turntable (130). The device (100) comprises at least two distance sensors (121.1, 121.2, 121.3), which operate in a contactless manner and are situated in a previously known configuration to a rotational axis (A1) of the turntable (130). The measurement axes (124.1, 124.2, 124.3) of the distance sensors (121.1, 121.2, 121.3) are radially oriented in the direction of the rotational axis (A1) so that the measurement axes (124.1, 124.2, 124.3) of the distance sensors (121.1, 121.2, 121.3) meet in a virtual measuring point (MV). The distance sensors (121.1, 121.2, 121.3) are connected to analysis electronics (200). Output signals (a.1, a.2, a.3) of the distance sensors (121.1, 121.2, 121.3) may be processed on the basis of the analysis electronics (200), in order to allow coaxial centering of the precision part (11) in relation to the rotational axis (A1) upon placement of the precision part (11) on the turntable (130).
Abstract:
An apparatus having a roughness sensing system and a roughness measurement sensor, wherein a slide element and a probe tip come to operation, and method of use thereof. The slide element is arranged on an extreme end of a probe pin in the form of a scan-slide element. The probe tip is integrated into the probe pin, and the distance between the scan-slide element and the probe tip is predetermined. The roughness sensing system is a 1D-, 2D- or 3D-scanning system having a parallelogram configuration. The apparatus further has a serving device which enables moving the probe pin together with the scan-slide element and the probe tip jointly over a surface to be scanned.
Abstract:
The invention is directed to a device for direct detection of the spatial position of a probe element in a multi-coordinate measuring apparatus, with a reference system comprised of at least one first standard and one second standard that are associated with coordinate axes of the measuring apparatus. The first standard is a planar standard with a line grating array. The second standard is non-contacting relative to the first standard and movable in two dimensions by means of a cross slide. Provision is made for a first position measuring system for determining the spatial position of the second standard with respect to the first standard, and for a second position measuring system for determining the spatial position of a carriage carrying a three-dimensional probe assembly, with respect to the second standard. The device forms in an associated multi-coordinate measuring apparatus a continuous measuring chain from the first standard to the tip of the probe element. This supplies directly a measurement result considering any guide inaccuracies, without the need to perform any path corrections.
Abstract:
A device for measuring a rotationally symmetric precision part, having a dog, drivable via a drive, and a revolving centering means, the dog and the revolving centering means being positioned in such a way that a rotationally symmetric precision part to be measured may be non-positively clamped coaxially between dog and centering means. A first angle measuring system is assigned to the dog, which provides signals that permit the drive-side angular position of the dog to be stated, and a further angle measuring system is assigned to the revolving centering means, which provides signals that permit the output-side angular position of the centering means to be stated. Software means are provided which determine slip between the dog and the rotationally symmetric precision part through a comparative calculation on the basis of the drive-side angular position and the output-side angular position.
Abstract:
Device with a removable probe head (15) for measuring a workpiece, whereby the device comprises a receiving section (17.1) for attaching the probe head (15). In the receiving section (17.1) sensors (17.2) in fixed, predefined positions are arranged. The removable probe head (15) comprises several counterpart elements, which interact with the sensors (17.2) if the probe head (15) is attached to the receiving section (17.1), whereby a coding of the removable probe head (15) can be set in advance, by adjusting the position of the counterpart elements.
Abstract:
A device aids the setter of a cutter head for cutting, e.g., milling or hobbing, of spiral bevel gears to align all rod-shaped blades with their tip cutting edges to an axial height which is as uniform as possible and to move them with their profile cutting edges to a correct radial position in the cutter head so that uniform chip removal can take place. The device has a stable arm which can be moved numerically controlled axially and radially to the cutter head, with positions which are continuously measured and with which each individual blade can be automatically pushed into its chamber in the cutter head. A probe which is connected to the arm measures the axial height of the tip cutting edge of each blade before, during and shortly after each blade is pushed in. An evaluation computer determines from the measurements of the probe and the simultaneously measured positions of the arm the value of the height of the tip cutting edge relative to the end face of the cutter head which is considered as a reference.
Abstract:
An apparatus having a roughness sensing system and a roughness measurement sensor, wherein a slide element and a probe tip come to operation, and method of use thereof. The slide element is arranged on an extreme end of a probe pin in the form of a scan-slide element. The probe tip is integrated into the probe pin, and the distance between the scan-slide element and the probe tip is predetermined. The roughness sensing system is a 1D-, 2D- or 3D-scanning system having a parallelogram configuration. The apparatus further has a serving device which enables moving the probe pin together with the scan-slide element and the probe tip jointly over a surface to be scanned.