摘要:
Supported noble metal-comprising catalysts which can be obtained by a) application of colloidal noble metal in the form of a colloidal solution, optionally in admixture with additives acting as promoters, to a support material, b1) drying of the resulting product at from 150 to 350° C., or b2) drying of the resulting product at from 150 to 350° C. and subsequent calcination at from 350 to 550° C. for epoxidation or oxidative dehydrogenation, a process for producing it, its use and also the use of colloidal noble metal for producing supported catalysts.
摘要:
Supported noble metal-comprising catalysts which can be obtained by a) application of colloidal noble metal in the form of a colloidal solution, optionally in admixture with additives acting as promoters, to a support material, b1) drying of the resulting product at from 150 to 350° C., or b2) drying of the resulting product at from 150 to 350° C. and subsequent calcination at from 350 to 550° C. for epoxidation or oxidative dehydrogenation, a process for producing it, its use and also the use of colloidal noble metal for producing supported catalysts.
摘要:
The use of a supported noble metal catalyst obtainable by applying a sparingly soluble noble metal compound to a support from solution or suspension, and subsequently treating thermally, for preparing olefinically unsaturated carbonyl compounds.
摘要:
The use of a supported noble metal catalyst obtainable by applying a sparingly soluble noble metal compound to a support from solution or suspension, and subsequently treating thermally, for preparing olefinically unsaturated carbonyl compounds.
摘要:
A method of production of a catalyst that has 0.05-0.25 wt. % of precious metal, preferably for the oxidative dehydrogenation of olefinically unsaturated alcohols, comprising the following steps a) producing a D.C. plasma, b) introducing the metal and support material into the plasma, c) evaporating the metal and support material or “shattering” the solid bodies of metal and support material in the plasma, and reaction of the particles, d) cooling, so that very small particles of composite material are obtained, e) applying the composite material on the catalyst support proper, the correspondingly produced catalyst and use thereof.
摘要:
A method of production of a catalyst that has 0.05-0.25 wt. % of precious metal, preferably for the oxidative dehydrogenation of olefinically unsaturated alcohols, comprising the following stepsa) producing a D.C. plasma, b) introducing the metal and support material into the plasma, c) evaporating the metal and support material or “shattering” the solid bodies of metal and support material in the plasma, and reaction of the particles, d) cooling, so that very small particles of composite material are obtained, e) applying the composite material on the catalyst support proper, the correspondingly produced catalyst and use thereof.
摘要:
The present invention relates to a process for preparing ethylene oxide by reaction of ethylene with oxygen in the presence of at least one silver-comprising catalyst, wherein the reaction takes place in a reactor which has a catalyst packed bed having at least two zones (i) and (ii) and the silver content of the catalyst in zone (i) is lower than the silver content of the catalyst in zone (ii). The catalyst packed bed preferably has a further zone (a) with which the reaction mixture comes into contact before the zones (i) and (ii). According to the invention, the silver content of the catalyst in the zone (a) is higher than the silver content of the catalyst in zone (i).
摘要:
The present invention relates to a process for preparing ethylene oxide by reaction of ethylene with oxygen in the presence of at least one silver-comprising catalyst, wherein the reaction takes place in a reactor which has a catalyst packed bed having at least two zones (i) and (ii) and the silver content of the catalyst in zone (i) is lower than the silver content of the catalyst in zone (ii). The catalyst packed bed preferably has a further zone (a) with which the reaction mixture comes into contact before the zones (i) and (ii). According to the invention, the silver content of the catalyst in the zone (a) is higher than the silver content of the catalyst in zone (i).