Abstract:
The present invention provides a process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the starting gases comprising a hydrocarbon-containing stream and an oxygen-containing stream and then mixing them in a mixing zone and, after they have flowed through the burner block, reacting them in the firing space and then cooling the products rapidly, wherein the surface on the firing space side of the burner block is covered with a purge gas stream and this purge gas stream is introduced through the burner block by means of several bores, where the averaged ratio of effective surface area of the burner block to number of these bores in the burner block for the purge gas stream is within a range from 5 to 100 cm2.
Abstract:
The invention relates to a method of production of catalyst support particles, containing zirconium dioxide and optionally silicon oxide, comprising the steps (i) preparation of a solution containing precursor compounds of zirconium dioxide and optionally of silicon dioxide, (ii) converting the solution(s) to an aerosol, (iii) bringing the aerosol into a directly or indirectly heated pyrolysis zone, (iv) carrying out pyrolysis, and (v) separation of the catalyst particles formed from the pyrolysis gas.
Abstract:
A process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the hydrocarbon gas and oxygen gas, and then reacting the gases and cooling the products rapidly. The reactor wall is blanketed with a purge gas stream, introduced through a plurality of feed lines. These feed lines deliver purge gas in a vector direction within a 10° angle of the main flow direction of the reactive gas stream. The purge gas is delivered at multiple stages relative to the main flow direction of the reactive gas stream, and the free cross section of the firing space available to the reactive gas stream, at the height of the feed lines of the purge gas stream, is approximately constant.
Abstract:
This specification describes the use of a composition comprising a nanoscale powder, a porous ceramic powder and a solvent for protecting a metallic surface against chemical attacks at high temperatures, in particular in a reducing and/or carburizing atmosphere, and also a corresponding process. Furthermore, this specification describes a plant part having a metallic surface which, in the operating state, is exposed to a reducing and/or carburizing atmosphere, wherein the surface is coated with a porous protective coating having a specific surface area of at least 20 m2/g.
Abstract:
A process for partial oxidation of hydrocarbons in a reactor, in which a stream comprising the hydrocarbon and a stream comprising the oxygen are fed to the reactor, wherein both streams fed to the reactor are conducted within the reactor separately through in each case one or more spatially separate lines, these lines having turbulence generators in their interior, owing to which, as a result of the imposed deflection of the flow direction downstream of turbulence generators, a highly turbulent flow field forms, and the streams are then mixed in a mixing zone after exiting from the lines and then converted in a reaction zone.
Abstract:
In the process for hydrogenating butadiyne over a catalyst which comprises at least one platinum group metal on an inorganic metal oxide as a support, the hydrogenation is performed at a pressure in the range from 1 to 40 bar and a temperature in the range from 0 to 100° C., and from 0.05 to 5% by weight, based on the overall catalyst, of platinum group metal is present on the support.
Abstract:
The present invention provides a process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the starting gases comprising a hydrocarbon-containing stream and an oxygen-containing stream and then mixing them in a mixing zone and, after they have flowed through the burner block, reacting them in the firing space and then cooling the products rapidly, wherein the surface on the firing space side of the burner block is covered with a purge gas stream and this purge gas stream is introduced through the burner block by means of several bores, where the averaged ratio of effective surface area of the burner block to number of these bores in the burner block for the purge gas stream is within a range from 5 to 100 cm2.
Abstract:
A method of production of a catalyst that has 0.05-0.25 wt. % of precious metal, preferably for the oxidative dehydrogenation of olefinically unsaturated alcohols, comprising the following steps a) producing a D.C. plasma, b) introducing the metal and support material into the plasma, c) evaporating the metal and support material or “shattering” the solid bodies of metal and support material in the plasma, and reaction of the particles, d) cooling, so that very small particles of composite material are obtained, e) applying the composite material on the catalyst support proper, the correspondingly produced catalyst and use thereof.
Abstract:
A method of production of a catalyst that has 0.05-0.25 wt. % of precious metal, preferably for the oxidative dehydrogenation of olefinically unsaturated alcohols, comprising the following stepsa) producing a D.C. plasma, b) introducing the metal and support material into the plasma, c) evaporating the metal and support material or “shattering” the solid bodies of metal and support material in the plasma, and reaction of the particles, d) cooling, so that very small particles of composite material are obtained, e) applying the composite material on the catalyst support proper, the correspondingly produced catalyst and use thereof.
Abstract:
A process for partial oxidation of hydrocarbons in a reactor, in which a stream comprising the hydrocarbon and a stream comprising the oxygen are fed to the reactor, wherein both streams fed to the reactor are conducted within the reactor separately through in each case one or more spatially separate lines, these lines having turbulence generators in their interior, owing to which, as a result of the imposed deflection of the flow direction downstream of turbulence generators, a highly turbulent flow field forms, and the streams are then mixed in a mixing zone after exiting from the lines and then converted in a reaction zone.