摘要:
Constituents of a network of medical devices communicate according to a synchronous communication protocol. A constituent of the network is established as a conductor. Time slots are assigned to each constituent of the network other than the conductor. Information is communicated between the constituents of the network in the assigned time slots.
摘要:
Medical data is communicated from a transmitter of an external unit to a receiver of an implantable medical device. The transmitter generates a preamble signal having encoded configuration data that informs the receiver of configuration settings to be used in receiving the medical data. The receiver detects the preamble and validates a modulation pattern of the preamble. Configuration data is decoded from the preamble signal and the receiver configuration is adjusted to receive the medical data.
摘要:
An implantable medical device (“IMD”) configured in accordance with an example embodiment of the invention generally includes a housing, a connector header block coupled to the housing, a dielectric sheath located around at least a portion of the housing and/or around at least a portion of the header block, and a telemetry antenna located within the dielectric sheath. The antenna is configured to support far field telemetry with an external device such as a programmer. In one example embodiment, the antenna is configured as a balanced antenna having two separate antenna elements driven 180 degrees out of phase. Each of the antenna elements has a feed point on a perimeter edge of the IMD housing and a floating endpoint. A number of alternate embodiments are also provided.
摘要:
Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
摘要:
Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
摘要:
A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channels in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels. The falsing protection algorithm restricts those channels from sniff processing likely to provide a false indication of a wake-up signal, such that sniff processing can aborted, prevented, limited or otherwise altered to conserve power consumption.
摘要:
A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channles in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels. The falsing protection algorithm restricts those channels from sniff processing likely to provide a false indication of a wake-up signal, such that sniff processing can aborted, prevented, limited or otherwise altered to conserve power consumption.
摘要:
An electrosurgical apparatus for cutting tissue and for ablating occlusions includes a pulse generator for selectively generating a train of pulses of electrical energy for application to a wire having an attached electrode, the generator having a variable output impedance, the wire and the electrode being at least part of a load impedance. The apparatus senses the load impedance relative to the output impedance and adjusts the output impedance to match the load impedance. The generator produces pulses of variable energy, measures the relative electrical energy produced by an arc in response to a pulse, compares the relative electrical energy to a predetermined value to determine an energy difference, and adjusts the energy of a subsequent pulse to reduce the energy difference for the subsequent pulse toward zero.
摘要:
An adjustable electronic filter apparatus is disclosed comprising a dielectric block having one or more through-holes and having a conformal conductive coating substantially over all outside surfaces as well as each through-hole therein. Each through-hole so plated forms a resonator from a transmission line which includes an open portion, for providing capacitive reactance at a first end, and a short-circuited end as a base, for providing an associated distributed inductance at a second end thereof. A unique method of tuning the adjustable electronic filter, whether a single resonator, a plurality of resonators, or a plurality of intercoupled multi-resonator filters, is disclosed that permits bi-directional tuning for at least one resonator in each of the above exemplary embodiments. By selectively adjusting an inductive portion of the plating at the base of each resonator so tuned, a resonator is quickly and accurately adjusted to a desired frequency. The selective adjusting may be accomplished by subtractive processes, such as abrasion or laser trimming, or by an additive process, such as by adding conductive paint for partially filling in a removed or absent portion of the plating at the base of a resonator.
摘要:
A solid state radio frequency switching circuit is provided that exhibits up to 25 db isolation between output ports. The circuit integrates the switching versatility of a pin diode switch with the excellent signal isolation of a quarter wavelength combiner.