摘要:
A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.
摘要:
A device for accurately dispensing small volumes of liquids in the form of uniform droplets. The dispensing device communicates with a source of compressed air which, during start-up transience of the dispensing device, directs a jet of compressed air at the trajectory of dispensed droplets, thereby deflecting the droplets out of their normal trajectory and away from the collecting surface or container and allowing accurate dispensing.
摘要:
Novel methods and instrumentation for mass spectrometry are described. Zoom-time of flight mass spectrometry (Zoom-TOF) allows increased mass resolution over a pre-determined specific range of masses. Methods for retrofitting traditional time-of-flight (TOF) and distance of flight (DOF) mass spectrometers are described, as well as novel instruments capable of performing Zoom-TOF analyses.
摘要:
A method for ionizing and desorbing a sample for analysis includes energizing a first and second electrode to produce a glow discharge at atmospheric pressure. The method further includes supplying a carrier gas to at least a portion of the glow discharge to create effluents thereof. The method further includes conducting the effluents of the glow discharge to the sample to ionize and desorb the sample for analysis. An associated apparatus is also disclosed.
摘要:
A distance-of-flight mass spectrometer (DOFMS) includes an ion source, a field-free region, an extraction region in which ions are accelerated, and a spatially-selective detector for spatially selectively detecting ions extracted by the extraction region. A method for operating a distance-of-flight mass spectrometer DOFMS comprises controlling a detection time in such a way as to permit ions with progressively greater mass-to-charge (m/z) ratios to enter the extraction region of the DOFMS at positions which will permit the ions with progressively greater m/z ratios to enter the detector of the DOFMS, generating a component mass spectrum at each selected value of detection time, and then assembling a composite mass spectrum by shifting the distance-of-flight axis of each component mass spectrum by a distance corresponding to the change in detection time.
摘要:
A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.
摘要:
A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.
摘要:
Disclosed is an apparatus for performing mass spectrometry and a method of analyzing a sample through mass spectrometry. In particular, the disclosure relates to an apparatus capable of ambient mass spectrometry and mass spectral imaging and a method for the same. The apparatus couples laser ablation, flowing atmospheric-pressure afterglow ionization, and a mass spectrometer.
摘要:
A method and apparatus for operating a mass spectrometer include providing at least two different ion sources, and coupling ion streams simultaneously from the at least two different ion sources to the spectrometer. Another method of operating a spectrometer includes a first coupling an ion stream from a first one of the ion sources into the spectrometer, next coupling an ion stream from a second one of the ion sources into the spectrometer, next coupling an ion stream from the second one of the ion sources into the spectrometer, and next coupling an ion stream from the first one of the ion sources into the spectrometer.
摘要:
A novel, time-of-flight mass spectrometer for the qualitative and quantitative analysis of elemental, molecular, and isotopic chemical samples is provided which offers increased sensitivity, speed of analysis, resolving power, and signal-to-noise ratios than prior mass spectrometers by properly sampling and collimating an ion beam from a continuous ion source, decelerating said ion, forming ion packets from the continuous ion beam, storing said ion packets, extracting and accelerating the ion packets along a stable flight path, transversely compressing said packets, focusing ions of similar mass, and detecting the focused ion masses. The mass spectrometer includes an ion optics assembly and an analyzer disposed along a common axis coincident with a continuous beam of sampled ions. The relationship between the ion extractor and accelerator are such that ions of isomass are focused at at least one point in space in the analyzer along a narrow flight path so as to be either removed from the flight path or allowed to proceed and be detected at substantially the same time. The separate modulation and extraction steps, when coupled with the space-focusing and selected deflection of certain ionic species, results in higher sensitivity, greater analysis speed, higher resolving power, and improved signal-to-noise ratio than achieved in prior orthogonal or on-axis time-of-flight mass spectrometers. A novel method achieved by the apparatus is also disclosed.