摘要:
A dielectrophoretic display is shifted from a low frequency closed state to a high frequency open state via at least one, and preferably several, intermediate frequency states; the use of such multiple frequency steps reduces flicker during the transition. A second type of dielectrophoretic display has a light-transmissive electrode through which the dielectrophoretic medium can be viewed and a conductor connected to the light-transmissive electrode at several points to reduce voltage variations within the light-transmissive electrode.
摘要:
A dielectrophoretic display is shifted from a low frequency closed state to a high frequency open state via at least one, and preferably several, intermediate frequency states; the use of such multiple frequency steps reduces flicker during the transition. A second type of dielectrophoretic display has a light-transmissive electrode through which the dielectrophoretic medium can be viewed and a conductor connected to the light-transmissive electrode at several points to reduce voltage variations within the light-transmissive electrode.
摘要:
A dielectrophoretic display is shifted from a low frequency closed state to a high frequency open state via at least one, and preferably several, intermediate frequency states; the use of such multiple frequency steps reduces flicker during the transition. A second type of dielectrophoretic display has a light-transmissive electrode through which the dielectrophoretic medium can be viewed and a conductor connected to the light-transmissive electrode at several points to reduce voltage variations within the light-transmissive electrode.
摘要:
An electro-optic display comprises, in order, a backplane comprising a plurality of pixel electrodes; a layer of a solid electro-optic medium; a main adhesive layer; and at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer. The electro-optic layer may be in direct contact with the backplane or separated therefrom by a thin auxiliary layer of adhesive. The main adhesive layer may be colored to provide a color filter array. An inverted front plane laminate useful in forming such a display comprises the same layers except that the backplane is replaced by a release sheet. The display combines good low temperature performance and good resolution at higher temperatures.
摘要:
An electro-optic display comprises, in order, a backplane comprising a plurality of pixel electrodes; a layer of a solid electro-optic medium; a main adhesive layer; and at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer. The electro-optic layer may be in direct contact with the backplane or separated therefrom by a thin auxiliary layer of adhesive. The main adhesive layer may be colored to provide a color filter array. An inverted front plane laminate useful in forming such a display comprises the same layers except that the backplane is replaced by a release sheet. The display combines good low temperature performance and good resolution at higher temperatures.
摘要:
An electro-optic display comprises, in order, a backplane comprising a plurality of pixel electrodes; a layer of a solid electro-optic medium; a main adhesive layer; and at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer. The electro-optic layer may be in direct contact with the backplane or separated therefrom by a thin auxiliary layer of adhesive. The main adhesive layer may be colored to provide a color filter array. An inverted front plane laminate useful in forming such a display comprises the same layers except that the backplane is replaced by a release sheet. The display combines good low temperature performance and good resolution at higher temperatures.
摘要:
A coating of an encapsulated electrophoretic medium is formed on a substrate (106) by dispersing in a fluid (104) a plurality of electrophoretic capsules (102), contacting at least a portion of a substrate (106) with the fluid (104); and applying a potential difference between at least a part of the portion of the substrate (106) contacting the fluid (104) and a counter-electrode (110) in electrical contact with the fluid (104), thereby causing capsules (102) to be deposited upon at least part of the portion of the substrate (106) contacting the fluid (102). Patterned coatings of capsules containing different colors may be deposited in registration with electrodes using multiple capsule deposition steps. Alternatively, patterned coatings of capsules may be formed by applying a fluid form of an electrophoretic medium to a substrate, and applying a temporally varying voltage between an electrode and the substrate. The process may be repeated to allow for deposition of full color displays.
摘要:
Various types of edge seals for protecting electro-optic displays against environmental contaminants are described. In one type of seal, the electro-optic layer is sandwiched between a backplane and a protective sheet and a sealing material extends between the backplane and the protective sheet. In other seals, the protective sheet is secured to the backplane or to a second protective sheet adjacent the backplane. The electro-optic layer can also be sealed between two layers of adhesive or between one layer of adhesive and the backplane. Other seals make use of flexible tapes extending around the periphery of the display.
摘要:
Various types of edge seals for protecting electro-optic displays against environmental contaminants are described. In one type of seal, the electro-optic layer is sandwiched between a backplane and a protective sheet and a sealing material extends between the backplane and the protective sheet. In other seals, the protective sheet is secured to the backplane or to a second protective sheet adjacent the backplane. The electro-optic layer can also be sealed between two layers of adhesive or between one layer of adhesive and the backplane. Other seals make use of flexible tapes extending around the periphery of the display.
摘要:
Various types of edge seals for protecting electro-optic displays against environmental contaminants are described. In one type of seal, the electro-optic layer is sandwiched between a backplane and a protective sheet and a sealing material extends between the backplane and the protective sheet. In other seals, the protective sheet is secured to the backplane or to a second protective sheet adjacent the backplane. The electro-optic layer can also be sealed between two layers of adhesive or between one layer of adhesive and the backplane. Other seals make use of flexible tapes extending around the periphery of the display.