摘要:
A reference potential generator is constituted of two signal lines 21 and 22; a charge supplying circuit to supply charge to signal lines 21 and 22; a first connection circiut 24a and 24b connecting the charge supplying circuit 23 and two signal lines 21 and 22 in order to supply charge to the two signal lines; and a second connection circuit 25 connecting two signal lines 21 and 22 together by the second control signal, and two signal lines are disconnected after the potentials of the two signal lines determined by the supplied charge and each of load capacitances of signal lines are averaged. A semiconductor memory device of the invention incorporating the above reference potential generator generating an exact reference potential, is able to amplify and output the potential difference between the reference potential and the potential of data readout in the bit line, and by this, "1" or "0" of readout data can be precisely determined.
摘要:
The life of a semiconductor memory device can be prolonged by using a plurality of memory cells and decreasing the stress applied to the dielectric film of the memory cells storing a data value "1." This is achieved in the present invention by decreasing the number of rewritings required to retain stored data. Specifically, the present invention utilizes a reverse and rewrite means to reverse and rewrite data back into memory cells after being read, memory means for memorizing a signal indicating whether the currently stored data is in a reversed state, and judging means for judging whether the data should be reversely output.
摘要:
The present invention extends the reading range between a contactless type information medium (semiconductor integrated circuit) and a reader/writer, which exchanges data in contactless communications with the contactless type information medium, and enables a stable data exchange even if the power supply voltage is lowered when data is returned from the contactless type information medium to the reader/writer. Specifically, when data is returned from the contactless type information medium, the data to be returned is held in the logic circuit section 200 capable of operating at a lower voltage than the non-volatile memory circuit section 300, and the reset detection lower limit voltage to be used by the reset generating circuit 160 during the data-returning period is set to be lower than that during periods other than the data-returning period.
摘要:
A semiconductor memory device comprises a main memory cell, a redundant memory cell, a redundant address data cell comprising a non-volatile memory which electrically memorizes an address of a redundant memory cell which replaced a failed memory cell in the main memory cell, a control circuit 15 and a redundant memory cell selecting circuit 16. The redundant memory cell selecting circuit serves to hold first address data which has been read from the redundant address data cell, and to compare the first address data with second address data for a read or write operation which is input via the control circuit and thereby select the main memory cell or the redundant memory cell.
摘要:
Bit lines BL0 and /BL0 are connected to a sense amplifier SA0, the gate of a first MOS transistor to a first word line WL0, a first electrode of a first Ferroelectric capacitor Cs1 to the source of the first Qn, the drain of the first Qn to BL0, a second electrode of Cs1 to a first plate electrode CP0, the gate of a second MOS transistor Qn to a second word line DWL0, a first electrode of a second Ferroelectric capacitor Cd2 to the source of the second Qn, the drain of the second Qn to /BL0, and a second electrode of Cd1 to a second plate electrode DCP0, and after turning off the second Qn, the logic voltage of DCP0 is inverted. Hence, in a semiconductor memory device employing the Ferroelectric element, the dummy memory capacitor is initialized securely, and high speed reading is enabled without concentration of power consumption.
摘要:
Bit lines BL0 and /BL0 are connected to a sense amplifier SA0, the gate of a first MOS transistor to a first word line WL0, a first electrode of a first ferrodielectric capacitor Cs1 to the source of the first Qn, the drain of the first Qn to BL0, a second electrode of Cs1 to a first plate electrode CP0, the gate of a second MOS transistor Qn to a second word line DWL0, a first electrode of a second ferrodielectric capacitor Cd2 to the source of the second Qn, the drain of the second Qn to /BL0, and a second electrode of Cd1 to a second plate electrode DCP0, and after turning off the second Qn, the logic voltage of DCP0 is inverted. Hence, in a semiconductor memory device employing the ferrodielectric element, the dummy memory capacitor is initialized securely, and high speed reading is enabled without concentration of power consumption.
摘要:
The present invention extends the reading range between a contactless type information medium (semiconductor integrated circuit) and a reader/writer, which exchanges data in contactless communications with the contactless type information medium, and enables a stable data exchange even if the power supply voltage is lowered when data is returned from the contactless type information medium to the reader/writer. Specifically, when data is returned from the contactless type information medium, the data to be returned is held in the logic circuit section 200 capable of operating at a lower voltage than the non-volatile memory circuit section 300, and the reset detection lower limit voltage to be used by the reset generating circuit 160 during the data-returning period is set to be lower than that during periods other than the data-returning period.
摘要:
A semiconductor integrated circuit includes a supply voltage generator for rectifying a signal received by an antenna coil and generating a supply voltage set at a predetermined voltage by a regulator, and a demodulator. The demodulator includes a demodulation circuit for demodulating an input signal and outputting the demodulated input signal, a resistor whose one end is connected to one end of the antenna coil, a diode whose anode is connected to the other end of the resistor and whose cathode is connected to a node located to the input end of the demodulation circuit, a first capacitance connected between a node at which the resistor and the diode are connected to each other and a grounding conductor, and a second capacitance connected between a node at which the diode and the demodulation circuit are connected to each other and a grounding conductor.
摘要:
A reference potential generator is constituted of two signal lines 21 and 22; a charge supplying means to supply charge to signal lines 21 and 22; a first connection circuit 24a and 24b connecting the charge supplying circuit 23 and two signal lines 21 and 22 in order to supply charge to the two signal lines; and a second connection circuit 25 connecting two signal lines 21 and 22 together by the second control signal, and two signal lines are disconnected after the potentials of the two signal lines determined by the supplied charge and each of load capacitances of signal lines are averaged. A semiconductor memory device of the invention incorporating the above reference potential generator generating an exact reference potential, is able to amplify and output the potential difference between the reference potential and the potential of data readout in the bit line, and by this, "1" or "0" of readout data can be precisely determined.
摘要:
A semiconductor integrated circuit includes a supply voltage generator for rectifying a signal received by an antenna coil and generating a supply voltage set at a predetermined voltage by a regulator, and a demodulator. The demodulator includes a demodulation circuit for demodulating an input signal and outputting the demodulated input signal, a resistor whose one end is connected to one end of the antenna coil, a diode whose anode is connected to the other end of the resistor and whose cathode is connected to a node located to the input end of the demodulation circuit, a first capacitance connected between a node at which the resistor and the diode are connected to each other and a grounding conductor, and a second capacitance connected between a node at which the diode and the demodulation circuit are connected to each other and a grounding conductor.