摘要:
A semiconductor integrated circuit device includes: a plurality of devices under test formed on a substrate; a selection circuit formed on the substrate which selects two of the plurality of devices under test; a magnitude comparison circuit formed on the substrate which measures an electrical characteristic of the two selected devices under test and makes a magnitude comparison between values of the measured electrical characteristic; an address memory circuit formed on the substrate which stores addresses of the two devices under test between which the magnitude comparison has been made; and a control circuit formed on the substrate and connected to the selection circuit, the magnitude comparison circuit, and the address memory circuit.
摘要:
An evaluation device for evaluating a semiconductor device, used for evaluating electric characteristics of an electrical connection member provided in a vertical direction to a substrate surface, includes a unit circuit having a switching transistor in which a gate thereof connected to a signal line and one of a source and a drain thereof is connected to a first interconnect, and a first resistance element in which one terminal is connected to the other one of the source and the drain of the switching transistor and the other terminal is connected to a second interconnect. The first resistance element constituting each unit circuit includes at least one electrical connection member.
摘要:
Herein disclosed is a semiconductor integrated circuit device comprising a SRAM having its memory cell composed of transfer MISFETs to be controlled through word lines and drive MISFETs. The gate electrodes of the drive MISFETs and the gate electrodes of the transfer MISFETs of the memory cell, and the word lines are individually formed of different conductive layers. The drive MISFETs and the transfer MISFETs are individually arranged to cross each other in the gate length direction. The word lines are extended in the gate length direction of the gate electrodes of the drive MISFETs and caused to cross the gate electrodes of the drive MISFETs partially. The two transfer MISFETs of the memory cell have their individual gate electrodes connected with two respective word lines spaced from each other and extended in an identical direction. The region defined by the two word lines is arranged therein with the two drive MISFETs and the source lines.The source line is formed of a conductive layer identical to that of the word line. The individual data lines of the complementary data line are formed of an identical conductive layer which is different from that of the word line and the source line. The identical conductive layer between the word line and source line and the complementary data line is formed with two word lines: a main word line extended in the first direction identical to that of the word line and source line and used by adopting the divided word line system: and a sub-word line used by adopting the double word line system.
摘要:
Bit lines BL0 and /BL0 are connected to a sense amplifier SA0, the gate of a first MOS transistor to a first word line WL0, a first electrode of a first ferrodielectric capacitor Cs1 to the source of the first Qn, the drain of the first Qn to BL0, a second electrode of Cs1 to a first plate electrode CP0, the gate of a second MOS transistor Qn to a second word line DWL0, a first electrode of a second ferrodielectric capacitor Cd2 to the source of the second Qn, the drain of the second Qn to /BL0, and a second electrode of Cd1 to a second plate electrode DCP0, and after turning off the second Qn, the logic voltage of DCP0 is inverted. Hence, in a semiconductor memory device employing the ferrodielectric element, the dummy memory capacitor is initialized securely, and high speed reading is enabled without concentration of power consumption.
摘要:
Herein disclosed is a semiconductor integrated circuit device which has a memory array or a memory mat formed of memory cells arranged regularly in a matrix shape. At the end portion or inside of the memory array or memory cell in the region of the device where the patterning of the memory cells is discontinued or interrupted, the shape of an element isolating insulating film, which is formed for regulating the memory cells having pattern interruptions, is made substantially identical to the shape of the element isolating insulating film for regulating the memory cells in the region of the device where the patternings of the memory cells are of an uninterrupted regular form. In the location on the chip front face where the regular patterns associated with the memory area are discontinued, there is formed a dummy pattern having a shape made substantially identical to that of a gate electrode arranged at the end portion of the location where the regular patterns are interrupted.
摘要:
Each of the memory cells in a SRAM includes two driver MOS transistors, two transfer gate MOS transistors and two load resistances. The gate electrode layers of the MOS transistors are formed from a first-level conductive layer provided on the surface of a semiconductor substrate. The source regions of the two driver MOS transistors in each memory cell are connected in common and further connected to a ground potential point through a second-level conductive layer. The two load resistances in each memory cell are formed from a third-level high-resistance material layer. The second-level conductive layer is formed from a low-resistance material layer. Thus the resistance of the sources of the two driver MOS transistors is lowered.
摘要:
A semiconductor memory is provided with automatic refresh means including a timer, a refresh counter and a refresh buffer each formed on a semiconductor chip mounted with an asynchronous memory, for automatically performing a periodic refresh operation on the basis of a basic clock signal which is generated in response to the detection of a logical change in the output of the refresh counter. The automatic refresh counter includes means for performing one of a read operation and a write operation which are based upon a regular address signal asynchronous with the periodic refresh operation, in preference to the periodic refresh operation.
摘要:
A semiconductor memory device of nonvolatile ferroelectric capable of stable operation without loss of logic voltage "L" data of the memory cell in rewriting operation. To achieve, for example, as shown in FIG. 1, diodes 1, 2 are connected to cell plate lines 39, 40. Therefore, in rewriting operation, if there is a parasitic resistance 3 in the cell plate line 39, it is possible to prevent occurrence of transient phenomenon of temporary transition of the cell plate line 39 to an excessive negative voltage (for example, lower than -1V) which may cause loss of data.
摘要:
A reference potential generator is constituted of two signal lines 21 and 22; a charge supplying means to supply charge to signal lines 21 and 22; a first connection circuit 24a and 24b connecting the charge supplying circuit 23 and two signal lines 21 and 22 in order to supply charge to the two signal lines; and a second connection circuit 25 connecting two signal lines 21 and 22 together by the second control signal, and two signal lines are disconnected after the potentials of the two signal lines determined by the supplied charge and each of load capacitances of signal lines are averaged. A semiconductor memory device of the invention incorporating the above reference potential generator generating an exact reference potential, is able to amplify and output the potential difference between the reference potential and the potential of data readout in the bit line, and by this, "1" or "0" of readout data can be precisely determined.
摘要:
Herein disclosed is a semiconductor integrated circuit device comprising a SRAM having its memory cell composed of transfer MISFETs to be controlled through word lines and drive MISFETs. The gate electrodes of the drive MISFETs and the gate electrodes of the transfer MISFETs of the memory cell, and the word lines are individually formed of different conductive layers. The drive MISFETs and the transfer MISFETs are individually arranged to cross each other in the gate length direction. The word lines are extended in the gate length direction of the gate electrodes of the drive MISFETs and caused to cross the gate electrodes of the drive MISFETs partially. The two transfer MISFETs of the memory cell have their individual gate electrodes connected with two respective word lines spaced from each other and extended in an identical direction. The region defined by the two word lines is arranged therein with the two drive MISFETs and the source lines.The source line is formed of a conductive layer identical to that of the word line. The individual data lines of the complementary data line are formed of an identical conductive layer which is different from that of the word line and the source line. The identical conductive layer between the word line and source line and the complementary data line is formed with two word lines: a main word line extended in the first direction identical to that of the word line and source line and used by adopting the divided word line system: and a sub-word line used by adopting the double word line system.