摘要:
A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
摘要:
A laser bias control and monitoring circuit receives a monitor diode current on an input node and generate a bias current for a laser diode on an output node where the monitor diode current flows into (positive polarity) or out of (negative polarity) the input node. The laser bias control and monitoring circuit includes a polarity independent current sensing circuit configured to receive the monitor diode current in either positive or negative polarity and to generate a normalized output current having a magnitude proportional to a magnitude of the monitor diode current. In this manner, the laser bias control and monitoring circuit can be used with laser diode and monitor diode combination in either the common anode or the common cathode configuration, or with the monitor diode current being provided from the anode or cathode of the monitor diode. No reprogramming or reconfiguration of the circuit is required.
摘要:
A laser bias control and monitoring circuit receives a monitor diode current on an input node and generate a bias current for a laser diode on an output node where the monitor diode current flows into (positive polarity) or out of (negative polarity) the input node. The laser bias control and monitoring circuit includes a polarity independent current sensing circuit configured to receive the monitor diode current in either positive or negative polarity and to generate a normalized output current having a magnitude proportional to a magnitude of the monitor diode current. In this manner, the laser bias control and monitoring circuit can be used with laser diode and monitor diode combination in either the common anode or the common cathode configuration, or with the monitor diode current being provided from the anode or cathode of the monitor diode. No reprogramming or reconfiguration of the circuit is required.
摘要:
A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
摘要:
A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
摘要:
A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
摘要:
An interface system couples a fixed impedance device to a receiver for transmitting data signals at different data rates at different times. The interface system includes elements that are connected to provide different time constants of responsiveness to data signals of higher and lower data rates without distorting the data signals beyond usability.
摘要:
A fail-safe differential receiver having a differential amplifier adapted to receive first and second differential input signals and generate a differential voltage. A peak detector is coupled to the differential amplifier for generating a detect signal and a comparator is coupled to the peak detector for comparing the detect signal to a threshold voltage and providing a comparison signal. A directing circuit is coupled to the differential amplifier for receiving the first and second differential input signals and is coupled to the comparator for receiving the comparison signal. An output amplifier is coupled to the directing circuit. The directing circuit selectively directs the first and second differential input signals to the output amplifier as a function of the value of the comparison signal from the comparator.
摘要:
A programmable element includes a diode and a programmable structure formed in a polysilicon layer isolated from a semiconductor substrate by a dielectric layer. The diode includes a first region and a second region of opposite conductivity types. The programmable structure includes a third region and a fourth region of opposite conductivity types. The first region of the diode and the third region of the programmable structure are electrically connected. In operation, the programmable structure is programmed to a low impedance state when a voltage exceeding a first breakdown voltage of the programmable structure is applied to reverse bias the programmable structure. The programmable element can be used to form a programmable array having very low parasitic capacitance, enabling the realization of a large and ultra fast programmable logic array.
摘要:
Input structures and topologies are provided for coupling a differential input into a first stage of a circuit, topology, or device. An input pin is coupled to an impedance divider that translates an input voltage to accommodate low input voltage levels, while not saturating an input differential pair. A termination pair with a center tap pin is further coupled to the input pins. The center tap facilitates coupling different termination configurations to the input signal. The topologies accommodate packaged devices that have at least three external pins, two pins for the coupling of a differential input signal, and a pin for the termination pair center tap.