摘要:
A logging tool includes a tool body; a simple transmitter comprising a single antenna disposed on the tool body; four simple receivers, each comprising a single antenna, disposed on the tool body and spaced apart from the simple transmitter to form four arrays; and an electronic module for controlling operation of the four arrays, wherein the simple transmitter is configured to generate a magnetic field having a transverse component, wherein each of the four simple receivers is sensitive to the magnetic field generated by the simple transmitter, and at least one of the four simple receivers is sensitive to the transverse component of the magnetic field generated by the simple transmitter, and wherein the four arrays are configured to provide measurements at at least three depths of investigation.
摘要:
Systems and methods are provided for directional propagation-type logging measurements not sensitive to dip and anisotropy over a wide frequency range. Estimates of the distance of the logging tool to a bed boundary are obtained using “up-down” measurements with antenna configurations having tilted magnetic dipoles. These estimates are insensitive to anistropy and dip, undesirable complications of directional measurements.
摘要:
A method and apparatus for producing a conductivity log, unaffected by shoulder effect and dip, from voltage data developed by a well tool disposed in a borehole. The method involves accessing the voltage data developed by the tool, processing the data, reconstructing two-coil voltage data, and computing differences of the two-coil data, to derive a conductivity profile representative of the formation. The apparatus forms part of a well logging system including a well tool adapted to be moveable through a borehole. The apparatus being coupled to the well tool and adapted with means to access voltage data developed by the receivers disposed on the well tool. The apparatus further adapted with means for boosting the voltage data, means for reconstructing two-coil voltages from the boosted voltage data, means for processing the reconstructed two-coil voltage data, and means for producing a conductivity log from the processed two-coil voltages.
摘要:
A maximum entropy method (MEM) determines a more accurate formation parameter profile, such as conductivity profile, of a formation. The MEM method employs an iterative procedure for determining the formation parameter profile. At each interation, theoretical logs are computed and compared with the measured log data. One iterative step is the calculation of a forward model to predict the response of the tool in a given assumed formation. Another iterative step is the solution of a set of linear equations to update the assumed formation parameter in the formation to produce closer agreement to the measured data. In a solution iterative step, the input is the measured values of the voltages denoted by V.sub.k.sup.j and the calculated values V.sub.k.sup.j, the output is an improved formation parameter profile .sigma..sub.l.sup.(n+1). In the solution step, a set of linear equations is solved for intermediate quantities q.sub.l.sup.(n), related to .sigma..sub.l.sup.(n) by the formula.sigma..sub.l.sup.(n) =.pi.exp(q.sub.l.sup.(n)),where .pi. is a constant. Upon completion of the solution step, the updated formation parameter profile .sigma..sub.l.sup.(n+1) is stored and the following inequality is tested to determine if it be true or not true:.vertline..sigma..sub.l.sup.(n+1) -.sigma..sub.l.sup.(n) .vertline./.sigma..sub.l.sup.(n)
摘要:
The apparatus employs the remote field eddy-current (RFEC) inspection technique to electromagnetically measure physical parameters of a metallic pipe. RFEC devices inserted into and displaced along a cylindrical pipes may be used to measure the ratio of pipe thickness to electromagnetic skin-depth and thus allow for the non-invasive detection of flaws or metal loss. Typically these RFEC thickness measurements exhibit a so-called double-indication of flaws, an undesired artifact due to a double-peaked geometrical sensitivity function of the device. The method describes a means by which this double indication artifact may be removed by an appropriate processing of RFEC measurements performed by an apparatus specifically designed for this purpose. The invention is particularly well designed for applications in the oilfield industry.
摘要:
A method to determine one or more borehole corrected formation properties using measurements made using a logging tool disposed in a borehole penetrating an earth formation is disclosed. The measurements are used to determine an apparent conductivity tensor for the formation and, for a set of parameters, a parameter value for each parameter in a subset of the set of parameters. A parameter value for each parameter in the set of parameters not in the subset is provided and a borehole-inclusive modeled conductivity tensor is computed. The apparent conductivity tensor and the borehole-inclusive modeled conductivity tensor are iteratively used to optimize the parameter values, and the optimized parameter values are used to compute an optimized conductivity tensor. A borehole corrected conductivity tensor is computed using the optimized conductivity tensor, and the borehole corrected formation properties are determined using the borehole corrected conductivity tensor and/or the optimized parameter values.
摘要:
The present invention relates to a downhole logging tool having on its tool body a set of co-located antennas, one or more additional antennas spaced longitudinally apart from the set of co-located antennas, an electromagnetically transparent shield circumferentially surrounding the set of co-located antennas, and an electromagnetically transparent shield circumferentially surrounding each of the one or more additional antennas. The downhole logging tool may be a wireline or while-drilling tool, and it may be an induction or propagation tool. The shields may have slots that are locally perpendicular to the windings of underlying coil antennas.
摘要:
A method to determine one or more borehole corrected formation properties using measurements made using a logging tool disposed in a borehole penetrating an earth formation is disclosed. The measurements are used to determine an apparent conductivity tensor for the formation and, for a set of parameters, a parameter value for each parameter in a subset of the set of parameters. A parameter value for each parameter in the set of parameters not in the subset is provided and a borehole-inclusive modeled conductivity tensor is computed. The apparent conductivity tensor and the borehole-inclusive modeled conductivity tensor are iteratively used to optimize the parameter values, and the optimized parameter values are used to compute an optimized conductivity tensor. A borehole corrected conductivity tensor is computed using the optimized conductivity tensor, and the borehole corrected formation properties are determined using the borehole corrected conductivity tensor and/or the optimized parameter values.
摘要:
A method and apparatus is disclosed for electrically measuring the inside diameter of a metallic pipe, such as oil or gas well casing. The transimpedance of two coaxial coils within the pipe is determined and then resolved into its inphase and quadrature components. The difference of the magnitudes of the two components is equal to an expansion equation which is a function of the inside diameter of the pipe and a factor proportional to the ratio of the permeability to the conductivity of the pipe. The inphase component of the impedance is equal to a second expansion equation which is a function of the inside diameter of the pipe and the factor proportional to the ratio of the permeability to the conductivity of the pipe. The two equations are solved simultaneously to generate signals for the pipe's inside diameter and the ratio of permeability to conductivity.
摘要:
A wellbore tool for locating a target wellbore containing a conductive member from a second wellbore and directing the trajectory of the second wellbore relative to the target wellbore includes an electric current driver having an insulated gap; a three-axis magnetometer positioned within a non-magnetic housing that is disposed within a non-magnetic tubular, the three-axis magnetometer positioned below the electric current driver; a drill bit positioned below the three-axis magnetometer; a hollow tubular connected between the electric current driver and the three-axis magnetometer; and a measurement-while-drilling tool. The current driver generates an electric current across the gap to the portion of the tool below the insulated gap. In a method a current is generated across the insulated gap to the portion of the tool below the insulated gap to the conductive material in the target wellbore returning to a portion of the bottom hole assembly above the insulated gap thereby producing a target magnetic field. Measuring the target magnetic field at the bottom hole assembly and the earth's magnetic field; and determining the position of the second wellbore relative to the target wellbore. Then steering the bottom hole assembly to drill the second wellbore along a trajectory relative to the target wellbore.