摘要:
The invention provides a method for cycle-by-cycle control of a LED current (ILED) flowing through a LED circuit arrangement (LEDCIRC) at a mean LED current level. The method comprises a) establishing a converter current (IL), b) establishing an oscillation of the converter current (IL) between substantially a valley current level and substantially a peak current level, c) feeding the LED circuit arrangement (LEDCIRC) with the converter current (IL) as the LED current during a part of an oscillation cycle of the oscillation of the converter current, d) determining a current level correction for compensating a current level error between an integral over an oscillation cycle of the LED current and a reference, the reference being representative of the mean LED current level, and e) adjusting at least one of the valley current level and the peak current level with the current level correction for use in a successive cycle of the oscillation of the converter current. The invention also provides a circuit arrangement operable for using the method, a LED driver IC using the circuit arrangement, a circuit composition with at least one LED and the circuit arrangement, and a lighting system with the circuit composition.
摘要:
The invention provides a method for cycle-by-cycle control of a LED current (ILED) flowing through a LED circuit arrangement (LEDCIRC) at a mean LED current level. The method comprises a) establishing a converter current (IL), b) establishing an oscillation of the converter current (IL) between substantially a valley current level and substantially a peak current level, c) feeding the LED circuit arrangement (LEDCIRC) with the converter current (IL) as the LED current during a part of an oscillation cycle of the oscillation of the converter current, d) determining a current level correction for compensating a current level error between an integral over an oscillation cycle of the LED current and a reference, the reference being representative of the mean LED current level, and e) adjusting at least one of the valley current level and the peak current level with the current level correction for use in a successive cycle of the oscillation of the converter current. The invention also provides a circuit arrangement operable for using the method, a LED driver IC using the circuit arrangement, a circuit composition with at least one LED and the circuit arrangement, and a lighting system with the circuit composition.
摘要:
A driver circuit (10) for a light emitting diode comprises a first driver circuit (32, 32′, 32′) for generating a first current output for driving the light emitting diode, wherein the first driver circuit has a control switch for interrupting the supply of the first current output. A second driver circuit (50) is for generating a second current output for driving the light emitting diode, and the second driver circuit also has a control switch for interrupting the supply of the second current output. The overall output of the driver circuit comprises a pulse width modulated output current which alternates between a high current (Ihigh) generated by the first driver circuit and a low current (Ilow) generated by the second driver circuit. By providing separate driver circuits for two different current requirements, the circuits can be optimised for each function. For example the high current value can comprise an LED operation current, and the low current value can comprise a non-zero measurement current.
摘要:
A driver circuit (10) for a light emitting diode comprises a first driver circuit (32, 32′, 32′) for generating a first current output for driving the light emitting diode, wherein the first driver circuit has a control switch for interrupting the supply of the first current output. A second driver circuit (50) is for generating a second current output for driving the light emitting diode, and the second driver circuit also has a control switch for interrupting the supply of the second current output. The overall output of the driver circuit comprises a pulse width modulated output current which alternates between a high current (Ihigh) generated by the first driver circuit and a low current (Ilow) generated by the second driver circuit. By providing separate driver circuits for two different current requirements, the circuits can be optimised for each function. For example the high current value can comprise an LED operation current, and the low current value can comprise a non-zero measurement current.
摘要:
Consistent with an example embodiment, there is a method of controlling a synchronous rectifier having an input signal having oscillations therein and a switch which is switchable between an open state and a closed state. The method comprises filtering the input signal to produce a filtered signal, comparing the filtered signal with a reference value, and opening the switch in response to the comparison, in which the filtering is active filtering.The active filtering may be based on determination of the peaks (positive and/or negative) of the signal, either directly, including a quarter period offset, or including decay—or a combination of the above; alternatively, the active filtering may be based on the a smoothing functions such as a switched low-pass filter or a short time integrator.
摘要:
The present invention relates to an electronic device for driving a light emitting diode, which includes a switch (Ts) being adapted to switch a switch-mode power converter, and controlling means (CNTL) being adapted for controlling the switch (Ts) in response to a sensing value (Vs) indicative of a current of the switch-mode power converter and for controlling by the switch (Ts) the output voltage of the switched power converter and a current (Tout) through the light emitting diode.
摘要:
A surge protection circuit for a circuit having a rectification module. The surge protection circuit includes a first diode, a second diode, a capacitor and a discharge device. The anode of the first diode is connected to a first input of the rectification module, and the anode of the second diode is connected to a second input of the rectification module. The cathodes of the first and second diodes are both connected to the first plate of the capacitor. The second plate of the capacitor is connected to the negative output of the rectification module. The capacitor is configured such that it is consistently charged to substantially the peak value of a supply voltage during normal operation between surge events. The discharge device is connected to the first plate of the capacitor and is configured to discharge the capacitor when the voltage across the capacitor is in excess of the peak of the maximum value of the normal supply voltage and not discharge the capacitor when the voltage across the capacitor is not in excess of the peak of the maximum value of the normal supply voltage.
摘要:
The present invention relates to an electronic device for driving a light emitting diode, which includes a switch (Ts) being adapted to switch a switch-mode power converter, and controlling means (CNTL) being adapted for controlling the switch (Ts) in response to a sensing value (Vs) indicative of a current of the switch-mode power converter and for controlling by the switch (Ts) the output voltage of the switched power converter and a current (Iout) through the light emitting diode.
摘要:
The present invention relates to an electronic device for driving a light emitting diode, which includes a switch being adapted to switch a switch-mode power converter, and controlling means being adapted for controlling the switch in response to a sensing value indicative of a current of the switch-mode power converter and for controlling by the switch the output voltage of the switched power converter and a current through the light emitting diode.
摘要:
The present invention relates to an electronic device for driving a light emitting diode, which includes a switch (Ts) being adapted to switch a switch-mode power converter, and controlling means (CNTL) being adapted for controlling the switch (Ts) in response to a sensing value (Vs) indicative of a current of the switch-mode power converter and for controlling by the switch (Ts) the output voltage of the switched power converter and a current (Iout) through the light emitting diode.