摘要:
Described herein is a framework for predicting development of a cardiovascular condition of interest in a patient. The framework involves determining, based on prior domain knowledge relating to the cardiovascular condition of interest, a risk score as a function of patient data. The patient data may include both genetic data and non-genetic data. In one implementation, the risk score is used to categorize the patient into at least one of multiple risk categories, the multiple risk categories being associated with different strategies to prevent the onset of the cardiovascular condition. The results generated by the framework may be presented to a physician to facilitate interpretation, risk assessment and/or clinical decision support.
摘要:
Automatic mapping of semantics in healthcare is provided. Data sets have different semantics (e.g., Gender designated with M and F in one system and Sex designated with 1 or 2 in another system). For semantic interoperability, the semantic links between the semantic systems of different healthcare entities are created (e.g., Gender=Sex and/or 1=F and 2=M) by a processor from statistics of the data itself. The distribution of variables, values, or variables and values, with or without other information and/or logic, is used to create a map from one semantic system to another. Similar distributions of other variable and/or values are likely to be for variables and/or values with the same meaning.
摘要:
Inclusion of a patient in a medical category is determined by triggering an analysis of an electronic medical record of the patient in response to an input of data into the electronic medical record. Identifying characteristics that indicate inclusion in the medical category with the analysis, and determining a probability the patient belongs to the medical category based on the identified characteristics.
摘要:
A predictive model of medical knowledge is trained from patient data of multiple different medical centers. The predictive model is machine learnt from routine patient data from multiple medical centers. Distributed learning avoids transfer of the patient data from any of the medical centers. Each medical center trains the predictive model from the local patient data. The learned statistics, and not patient data, are transmitted to a central server. The central server reconciles the statistics and proposes new statistics to each of the local medical centers. In an iterative approach, the predictive model is developed without transfer of patient data but with statistics responsive to patient data available from multiple medical centers. To assure comfort with the process, the transmitted statistics may be in a human readable format.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
An adverse event may be prevented by predicting the probability of a given patient to have or undergo the adverse event. The ability to predict the probability of the adverse event may be enhanced when a model is derived from public health data to categorize and propose values for medical record fields. The probability alone may prevent the adverse event by educating the patient or medical professional. The probability may be predicted at any time, such as upon entry of information for the patient, periodic analysis, or at the time of admission. The probability may be used to generate a workflow action item to reduce the probability, to warn, to output appropriate instructions, and/or assist in avoiding adverse event. The probability may be specific to a hospital, physician group, or other medical entity, allowing prevention to focus on past adverse event causes for the given entity.
摘要:
Adaptive medical data collection for medical entities may involve triggering an analysis of electronic records in response to information input into an Electronic Medical Record (EMR) of a patient. Determining a potential condition for the patient based on the analysis. Identifying additional information indicated as relevant to the potential condition of the patient, and generating a request for the identified additional information.
摘要:
Workflows for medical entities are determined and evaluated by determining a plurality of medical tasks based on an analysis of a plurality of electronic medical records of a medical entity. A workflow of the medical entity is determined based on a sequence of medical tasks, the sequence determined based on the analysis of the plurality of electronic medical records, and an evaluation of the workflow is performed based on a predefined criterion.
摘要:
A method for multiple-label data analysis includes: obtaining labeled data points from more than one labeler; building a classifier that maximizes a measure relating the data points, labels on the data points and a predicted output label; and assigning an output label to an input data point by using the classifier.