Abstract:
An electronic device includes at least one sensor, a display, and a processor. The processor is configured to determine a dimension of a physical object along an axis based on a change in position of the electronic device when the electronic device is moved from a first end of the physical object along the axis to a second end of the physical object along the axis. A method includes capturing and displaying imagery of a physical object at an electronic device, and receiving user input identifying at least two points of the physical object in the displayed imagery. The method further includes determining, at the electronic device, at least one dimensional aspect of the physical object based on the at least two points of the physical object using a three-dimensional mapping of the physical object.
Abstract:
A method includes determining, at a first time, a representation of a first head rotation of a head mounted display (HMD) using a first inertial sensor sample stream and rendering, at an application processor, a texture based on the first head rotation. The method further includes determining, at a second time subsequent to the first time, a representation of a second head rotation of the HMD using a second inertial sensor sample stream having a higher sampling rate than the first inertial sensor sample stream, and generating, at a compositor, a rotated representation of the texture based on a difference between the first head rotation and the second head rotation.
Abstract:
A method includes determining, at a first time, a representation of a first head rotation of a head mounted display (HMD) using a first inertial sensor sample stream and rendering, at an application processor, a texture based on the first head rotation. The method further includes determining, at a second time subsequent to the first time, a representation of a second head rotation of the HMD using a second inertial sensor sample stream having a higher sampling rate than the first inertial sensor sample stream, and generating, at a compositor, a rotated representation of the texture based on a difference between the first head rotation and the second head rotation.
Abstract:
A method includes sequentially outputting from an imaging sensor each pixel row of a set of pixel rows of an image captured by the imaging sensor. The method further includes displaying, at a display device, a pixel row representative of a first pixel row of the captured image prior to a second pixel row of the captured image being output by the imaging sensor. An apparatus includes an imaging sensor having a first lens that imparts a first type of spatial distortion, a display device coupled to the imaging sensor, the display to display imagery captured by the imaging sensor with the first spatial distortion, and an eyepiece lens aligned with the display, the eyepiece lens imparting a second type of spatial distortion that compensates for the first type of spatial distortion.
Abstract:
A head mounted display (HMD) device includes first and second laterally-curved displays disposed about a medial plane, wherein each of the first and second curved displays includes a first lateral section distal from the medial plane and having a curvature with a first radius and a second lateral section adjacent to the medial plane and having a curvature with a second radius less than the first radius.
Abstract:
A method includes sequentially outputting from an imaging sensor each pixel row of a set of pixel rows of an image captured by the imaging sensor. The method further includes displaying, at a display device, a pixel row representative of a first pixel row of the captured image prior to a second pixel row of the captured image being output by the imaging sensor. An apparatus includes an imaging sensor having a first lens that imparts a first type of spatial distortion, a display device coupled to the imaging sensor, the display to display imagery captured by the imaging sensor with the first spatial distortion, and an eyepiece lens aligned with the display, the eyepiece lens imparting a second type of spatial distortion that compensates for the first type of spatial distortion.
Abstract:
In a system having a user-portable display device, a method includes maintaining a lightfield data structure representing at least a portion of a four-dimensional (4D) lightfield for a three-dimensional (3D) world in association with a first pose of the user-portable display device relative to the 3D world. The method further includes determining a second pose of the user-portable display device relative to the 3D world, the second pose comprising an updated pose of the user-portable display device. The method additionally includes generating a display frame from the lightfield data structure based on the second pose, the display frame representing a field of view of the 3D world from the second pose.
Abstract:
Systems and methods for generating or enhancing representations of an interior space using data collected by a device, such as a mobile device, capable of simultaneous localization and mapping. An electronic device, such as a mobile device, can be configured to collect data using a variety of sensors as the device is carried or transported through a space. The collected data can be processed and analyzed to generate geometry data providing a three-dimensional representation of the space and objects in the space in near real time as the device is carried through the space. The geometry data can be used for a variety of purposes, including generating and/or enhancing models and other representations of an interior space, and/or assisting with navigation through the interior space.
Abstract:
A head mounted display (HMD) device includes first and second laterally-curved displays disposed about a medial plane, wherein each of the first and second curved displays includes a first lateral section distal from the medial plane and having a curvature with a first radius and a second lateral section adjacent to the medial plane and having a curvature with a second radius less than the first radius.