Abstract:
A display tile for arranging with other display tiles to form a multi-tile display includes display pixels in an active display area, pixel tape sections, and a transparent layer. The pixel tape sections surround the display pixels. Each pixel tape section overlaps an adjacent pixel tape section and is overlapped by another adjacent pixel tape section disposed opposite the adjacent pixel tape section. Each pixel tape section includes a pixel array. The transparent layer is disposed over the display pixels and the pixel arrays of the pixel tape sections. The display pixels and the pixel arrays are arranged to display an overall image of the display tile.
Abstract:
A tileable display panel includes an illumination layer, a display layer, and a screen layer. The display layer is disposed between the screen layer and the lamp layer and includes pixelets. Each of the pixelets is positioned to be illuminated by lamp light from the illumination layer and to project a magnified image sub-portion onto the screen layer such that the magnified image sub-portions collectively blend together to form a unified image on the screen layer. Each of the pixelets includes core pixels and peripheral pixels surrounding the core pixels on one or more sides which provide a higher image resolution in overlap regions on the screen layer when the magnified image sub-portions overlap on the screen layer.
Abstract:
A tileable display panel includes an array of display pixels including central display pixels near a center of the array having a center pixel pitch and perimeter display pixels along a perimeter of the array. A perimeter region surrounds the array. The perimeter region includes a first side that is joinable to a second side of another instance of the tileable display panel to form a multi-panel display. The perimeter region has a width that is greater than at least half the center pixel pitch such that a gap between adjacent perimeter display pixels of the tileable display panel and the other instance of the tileable display panel when forming the multi-panel display is greater than the center pixel pitch. The gap is visually masked by increasing a characteristic of the perimeter display pixels adjacent to the gap relative to the same characteristic of the central display pixels.
Abstract:
A display apparatus including a screen layer for displaying a unified image to a viewer and an illumination layer having an array of light sources. Each light source emits a light beam. An array of optical elements, each coupled to a corresponding light source in the array of light sources, is disposed between the screen layer and the illumination layer. The display layer includes a matrix of pixlets and a spacing region disposed between the pixlets in the matrix, wherein the array of light sources emit their light beams through the array of optical elements, wherein each optical element is configured to shape the received light beam into a divergent projection beam having a limited angular spread to project sub-images displayed by the pixlets as magnified sub-images on the backside of the screen layer, the magnified sub-images to combine to form the unified image that is substantially seamless.
Abstract:
A multi-panel display system includes an array of display panels arranged to be viewed as a multi-panel display. The multi-panel display includes a bezel pixel layer covering a bezel region of the multi-panel display. The bezel region is between pixel regions of the display panels in the array. The multi-panel display system also includes a display engine communicatively coupled to drive the display panels to display image sections and communicatively coupled to drive the bezel pixel layer to display a bezel shaped image section. The image sections and the bezel shaped image sections are subsections of a unified overall-image to be displayed on the multi-panel display.
Abstract:
A display panel includes a carrier substrate, a system interconnect, and a plurality of display modules disposed across the carrier substrate. The display modules are each communicatively coupled to the system interconnect to each output a different portion of an overall image communicated via the system interconnect. Each of the display modules includes an array of direct emission display pixels and a module interconnect to couple the array of direct emission display pixels to the system interconnect. The array of direct emission display pixels of a given display module of the plurality of display modules is distinct and separate from the array of direct emission display pixels of other display modules of the plurality of display modules.
Abstract:
An optical configuration for a display system includes a front screen, a first microlens array, and a second microlens array. The front screen has optical properties to absorb ambient light and let image light through. The first microlens array is coupled to receive the image light from a pixel array of an image generation layer. The second microlens array is disposed between the front screen and the first microlens array. The second microlens array is offset from the first microlens array by approximately a focal length of microlenses in the first microlens array. The second microlens array is coupled to direct the image light received from the first microlens array through front screen. Each of the microlenses in the first microlens array is axially aligned with a corresponding microlens in the second microlens array.
Abstract:
Techniques and mechanisms for determining misalignment of one or more tileable display panels. In an embodiment, a plurality of images are processed to create a super-resolution image of the one or more tileable display panels. The super-resolution image may be processed to recognize one or more features indicating misalignment in a reference image displayed by the one or more tileable display panels. In another embodiment, the one or more features are evaluated based on fiducial data to generate a signal indicating an adjustment to be made to a first tileable display panel.
Abstract:
A projection screen includes a transparent substrate having a first side and a second side, an array of lenses disposed along the first side of the transparent substrate, a dark film disposed across the second side of the transparent substrate, an array of holes disposed through the dark film, and an array of diffusing spots each aligned with a corresponding one of the array of holes.
Abstract:
A display including a screen layer for displaying a unified image to a viewer on a viewing side of the screen layer that is opposite a backside of the screen layer, and an illumination layer having an array of light sources. Each light source in the array is configured to emit a divergent projection beam having a limited angular spread. A display layer is disposed between the screen layer and the illumination layer, and includes a matrix of pixlets, a spacing region disposed between the pixlets in the matrix, wherein the array of light sources are positioned to emit the divergent projection beams having limited angular spread to project sub-images displayed by the pixlets as magnified sub-images on the backside of the screen layer, the magnified sub-images to combine to form a substantially seamless unified image, and one or more components positioned on the display layer in the spacing region.