Abstract:
A foveated display system includes a rendering device including at least one graphics processing unit (GPU) to render a foveal region and a peripheral region of a first image, wherein the foveal region has a higher resolution than the peripheral region. The system further includes a display device coupled to the rendering device via at least one physical layer. The display device includes a pixel array and a display controller coupled to the pixel array. The display controller includes a scaling component to upscale the first peripheral region to generate a scaled first peripheral region and a blending component to blend the foveal region with the scaled first peripheral region to generate a second image.
Abstract:
A display system includes a display device and a graphics processing unit (GPU) coupled via at least one physical layer. The display device includes a pixel array having a non-red-green-blue (non-RGB) pixel format. The GPU is configured to render an image in the non-RGB pixel format and provide the rendered image for transmission to the pixel array via the at least one physical layer.
Abstract:
A display panel includes an array of display pixels to output an image. The array of display pixels includes a central pixel region and a perimeter pixel region. The central pixel region includes central pixel units each having three different colored sub-pixels. The different colored sub-pixels of the central pixel units are organized according to a central layout pattern that repeats across the central pixel region. The perimeter pixel region is disposed along a perimeter of the central pixel region and includes perimeter pixel units that increase a brightness of the image along edges of the central pixel region to mask gaps around the array of display pixels when tiling the array of display pixels with other arrays of display pixels.
Abstract:
A tileable display panel includes an array of display pixels including central display pixels near a center of the array having a center pixel pitch and perimeter display pixels along a perimeter of the array. A perimeter region surrounds the array. The perimeter region includes a first side that is joinable to a second side of another instance of the tileable display panel to form a multi-panel display. The perimeter region has a width that is greater than at least half the center pixel pitch such that a gap between adjacent perimeter display pixels of the tileable display panel and the other instance of the tileable display panel when forming the multi-panel display is greater than the center pixel pitch. The gap is visually masked by increasing a characteristic of the perimeter display pixels adjacent to the gap relative to the same characteristic of the central display pixels.
Abstract:
A display including a screen layer for displaying a unified image to a viewer on a viewing side of the screen layer that is opposite a backside of the screen layer, and an illumination layer having an array of light sources. Each light source in the array is configured to emit a divergent projection beam having a limited angular spread. A display layer is disposed between the screen layer and the illumination layer, and includes a matrix of pixlets, a spacing region disposed between the pixlets in the matrix, wherein the array of light sources are positioned to emit the divergent projection beams having limited angular spread to project sub-images displayed by the pixlets as magnified sub-images on the backside of the screen layer, the magnified sub-images to combine to form a substantially seamless unified image, and one or more components positioned on the display layer in the spacing region.
Abstract:
A display device includes a pixel array and a display controller. The pixel array has a non-red-green-blue (non-RGB) pixel format that includes at least first, second, and third color components, and wherein sub-pixels of the first color component are present at a first resolution and sub-pixels of each of the second and third color components are present at a second resolution lower than the first resolution. The display controller is configured to receive a first image in a an RGB pixel format in which sub-pixels of the first color component, sub-pixels of the second color component, and sub-pixels of the third color component each are present in the first image at the second resolution. The display controller further is configured to scale sub-pixels of the first color component in the first image from the second resolution to the first resolution to generate a second image having the non-RGB format.
Abstract:
A display system includes a display device and a graphics processing unit (GPU) coupled via at least one physical layer. The display device includes a pixel array having a non-red-green-blue (non-RGB) pixel format. The GPU is configured to render an image in the non-RGB pixel format and provide the rendered image for transmission to the pixel array via the at least one physical layer.
Abstract:
A processing unit is configured to render first pixels representative of a high-acuity region in the image and second pixels representative of a low-acuity region in the image. A shaper is configured to reorganize the first pixels based on at least one dimension of the low-acuity region. A multiplexer is configured to multiplex the reorganized first pixels and the second pixels to form a display stream. An encoder is configured to compress the display stream for transmission to a display. A decoder configured to decompress the display stream. A demultiplexer is configured to demultiplex the first pixels and the second pixels. Another processing unit is configured to blend the first pixels and the second pixels to form blended pixel values representative of the image for presentation on a screen.
Abstract:
A processing unit is configured to render first pixels representative of a high-acuity region in the image and second pixels representative of a low-acuity region in the image. A shaper is configured to reorganize the first pixels based on at least one dimension of the low-acuity region. A multiplexer is configured to multiplex the reorganized first pixels and the second pixels to form a display stream. An encoder is configured to compress the display stream for transmission to a display. A decoder configured to decompress the display stream. A demultiplexer is configured to demultiplex the first pixels and the second pixels. Another processing unit is configured to blend the first pixels and the second pixels to form blended pixel values representative of the image for presentation on a screen.
Abstract:
A display system includes a display panel having an input to receive pixel data, the pixel data comprising a plurality of pixel values, an array of pixels partitioned into a foveal region and at least one peripheral region, and an array controller to group pixels in the at least one peripheral region into subsets of at least two pixels and to control each subset using a corresponding single pixel value from the plurality of pixel values. The display system further may include a rendering system to foveally render a display image based on the locations of the foveal region and the at least one peripheral regions, wherein for each row of the display image having pixels within at least one of the peripheral region, a number of pixel values represented in the pixel data for the row is less than a number of pixels in the row.