Abstract:
Example methods and systems use multiple sensors to determine whether a speaker is speaking. Audio data in an audio-channel speech band detected by a microphone can be received. Vibration data in a vibration-channel speech band representative of vibrations detected by a sensor other than the microphone can be received. The microphone and the sensor can be associated with a head-mountable device (HMD). It is determined whether the audio data is causally related to the vibration data. If the audio data and the vibration data are causally related, an indication can be generated that the audio data contains HMD-wearer speech. Causally related audio and vibration data can be used to increase accuracy of text transcription of the HMD-wearer speech. If the audio data and the vibration data are not causally related, an indication can be generated that the audio data does not contain HMD-wearer speech.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to using self-generated sounds for determining a worn state of a wearable computing device. A wearable computing device can transmit an audio signal. One or more sensors coupled to the wearable computing device may then receive a modified version of the audio signal. A comparison may be made between the modified version of the audio signal and at least one reference signal, where the at least one reference signal is based on the audio signal that is transmitted. Based on an output of the comparison, a determination can be made of whether the wearable computing device is being worn.
Abstract:
An example method includes receiving, by a head-mountable device (HMD), data corresponding to an information event, and providing an indication corresponding to the information event in response to receiving the data. The method further includes determining a gaze direction of an eye and determining that the gaze direction of the eye is an upward direction that corresponds to a location of a display of the HMD. The display is located in an upper periphery of a forward-looking field of view of the eye when the HMD is worn. The method further includes, in response to determining that the gaze direction of the eye is the upward direction, displaying graphical content related to the information event in the display.
Abstract:
This disclosure relates to winking to capture image data using an image capture device that is associated with a head-mountable device (HMD). An illustrative method includes detecting a wink gesture at an HMD. The method also includes causing an image capture device to capture image data, in response to detecting the wink gesture at the HMD.
Abstract:
Methods and systems are described that involve a head-mountable display (HMD) or an associated device determining the orientation of a person's head relative to their body. To do so, example methods and systems may compare sensor data from the HMD to corresponding sensor data from a tracking device that is expected to move in a manner that follows the wearer's body, such a mobile phone that is located in the HMD wearer's pocket.
Abstract:
Example methods and systems use multiple sensors to determine whether a speaker is speaking. Audio data in an audio-channel speech band detected by a microphone can be received. Vibration data in a vibration-channel speech band representative of vibrations detected by a sensor other than the microphone can be received. The microphone and the sensor can be associated with a head-mountable device (HMD). It is determined whether the audio data is causally related to the vibration data. If the audio data and the vibration data are causally related, an indication can be generated that the audio data contains HMD-wearer speech. Causally related audio and vibration data can be used to increase accuracy of text transcription of the HMD-wearer speech. If the audio data and the vibration data are not causally related, an indication can be generated that the audio data does not contain HMD-wearer speech.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to using self-generated sounds for determining a worn state of a wearable computing device. A wearable computing device can transmit an audio signal. One or more sensors coupled to the wearable computing device may then receive a modified version of the audio signal. A comparison may be made between the modified version of the audio signal and at least one reference signal, where the at least one reference signal is based on the audio signal that is transmitted. Based on an output of the comparison, a determination can be made of whether the wearable computing device is being worn.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to using self-generated sounds for determining a worn state of a wearable computing device. A wearable computing device can transmit an audio signal. One or more sensors coupled to the wearable computing device may then receive a modified version of the audio signal. A comparison may be made between the modified version of the audio signal and at least one reference signal, where the at least one reference signal is based on the audio signal that is transmitted. Based on an output of the comparison, a determination can be made of whether the wearable computing device is being worn.
Abstract:
Implementations generally relate to creating groups in a social network system. In one implementation, a method includes identifying at least one person that is proximate to a target user in a social network system, determining that the target user is generating a pattern; recognizing the at least one person proximate to the target user who is generating the pattern; creating a group in the social network system, and the group includes the at least one person generating the pattern; and associating the group with the target user.
Abstract:
Methods and systems are described that involve a wearable computing device or an associated device determining the orientation of a person's head relative to their body. To do so, example methods and systems may compare sensor data from the wearable computing device to corresponding sensor data from a tracking device that is expected to move in a manner that follows the wearer's body, such a mobile phone that is located in the wearable computing device's wearer's pocket.