Abstract:
In some examples, a method of making a therapy delivery element configured for at least partial insertion in a living body includes braiding a plurality of fibers to form an elongated braided structure with a lumen. At least one reinforcing structure is weaved into the fibers of the braided structure. A portion of the reinforcing structure is extended from the braided structure to form at least one fixation structure. At least one of the braided structure or the reinforcing structure can be attached to at least one of an electrode assembly or a connector assembly.
Abstract:
A medical device for placing a medical lead in the human body using minimally invasive techniques is described. One lead includes a lead body connected to a lead head having an aperture for providing fiber optic access to the interior of a helical electrode. The fiber optic shaft may be disposed within or along-side a drive shaft releasably coupled to the lead head to rotate the head. The drive shaft and lead body may be delivered using a delivery catheter. The delivery catheter can be advanced though a small incision to the target tissue site, and the site remotely visualized through the fiber optic scope extending through the lead head aperture. The lead head can be rotated, rotating the helical electrode into the tissue, and the catheter, drive shaft, and fiber optic probe removed.
Abstract:
Methods and apparatus for implanting a neural stimulation lead in a patient's body are described. A lead assembly comprises a pointed-tip stylet, a stimulation lead, and an optional tube to deploy a fixation element attached to the lead. One embodiment of the implant methods starts with inserting the pointed-tip lead assembly directly into tissue. After the desired implant position is determined, the pointed-tip component is separated from the stimulation lead and removed from the tissue, leaving the stimulation lead implanted. After confirmation that the stimulation lead is in the right tissue location, the pointed-tip component is removed from the body, leaving the stimulation lead in place. The stimulation lead can be connected to a neurostimulator to delivery therapies to treat neural disorders, such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain, etc.
Abstract:
In some examples, an extension includes a connector adapted to electrically couple to a proximal end of the therapy delivery element. An elongated extension body is attached to the connector. The elongated extension body includes a stylet coil having a stylet coil lumen. The stylet coil extends within the elongated extension body to the connector. A conductor assembly includes a plurality of insulated electrical conductors braided to extend around the stylet coil and electrically coupled to the connector. The conductor assembly includes an inner lumen with a diameter greater than an outside diameter of the stylet coil, wherein axial elongated of the elongated extension body reduces the inner diameter of the conductor assembly. A low durometer insulator extends around the conductor assembly. A stylet is sized to slide freely within the stylet coil lumen during implantation of the extension in the living body.
Abstract:
A biomedical conductor assembly adapted for at least partial insertion in a living body. The conductor assembly includes a plurality of the first electrical conductors each covered with an insulator and helically wound in a first direction to form an inner coil with a lumen. A plurality of second electrical conductors each including a plurality of un-insulated wires twisted in a ropelike configuration around a central axis to form a plurality of cables. Each cable is covered with an insulator and helically wound in a second opposite direction forming an outer coil in direct physical contact with the inner coil. The inner and outer coils are covered by an insulator. A method of making the conductor assembly and implanting a neurostimulation system is also disclosed.
Abstract:
In some examples, an extension includes a connector adapted to electrically couple to a proximal end of the therapy delivery element. An elongated extension body is attached to the connector. The elongated extension body includes a stylet coil having a stylet coil lumen. The stylet coil extends within the elongated extension body to the connector. A conductor assembly includes a plurality of insulated electrical conductors braided to extend around the stylet coil and electrically coupled to the connector. The conductor assembly includes an inner lumen with a diameter greater than an outside diameter of the stylet coil, wherein axial elongated of the elongated extension body reduces the inner diameter of the conductor assembly. A low durometer insulator extends around the conductor assembly. A stylet is sized to slide freely within the stylet coil lumen during implantation of the extension in the living body.
Abstract:
Suture anchors for securing therapy delivery elements, such as stimulation leads or catheters, within a living body. The suture anchor includes an inner sleeve constructed with an inner layer of a softer, more pliable material that easily conforms to the therapy delivery element to reduce slippage and an outer layer constructed from a harder, stiffer durometer material that protects the therapy delivery elements from damage due to over-tightening the tie down sutures. A suture material located in the suture groove is tensioned to apply a radial compressive force. The reinforcing structure spreads the radial compressive force along a greater surface area of the therapy delivery element.
Abstract:
A therapy assembly configured for at least partial insertion in a living body. At least one fixation structure is attached to the therapy delivery element proximate the electrodes. The fixation structure is configured to collapse radially inward and wrap circumferentially around the therapy delivery element to a collapsed configuration when inserted into a lumen of an introducer. The fixation structures deploy to a deployed configuration when the introducer is retracted. The fixation structure includes major surfaces generally parallel with, and extending radially outward from, a central axis of the therapy delivery element, proximal edge surface oriented toward the proximal end, and a distal edge surface oriented toward the distal end. The proximal and distal edge surfaces provide generally symmetrical resistance to displacement of the therapy delivery element within the living body in either a proximal direction or a distal direction along the central axis.
Abstract:
Methods and apparatus for implanting a neural stimulation lead in a patient's body are described. A lead assembly comprises a pointed-tip stylet, a stimulation lead, and an optional tube to deploy a fixation element attached to the lead. One embodiment of the implant methods starts with inserting the pointed-tip lead assembly directly into tissue. After the desired implant position is determined, the pointed-tip component is separated from the stimulation lead and removed from the tissue, leaving the stimulation lead implanted. After confirmation that the stimulation lead is in the right tissue location, the pointed-tip component is removed from the body, leaving the stimulation lead in place. The stimulation lead can be connected to a neurostimulator to delivery therapies to treat neural disorders, such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain, etc.
Abstract:
A therapy delivery element configured for at least partial insertion in a living body. A braided structure surrounds the conductor assembly. A distal end of the braided structure is attached to an electrode assembly and a free floating proximal end is located near a connector assembly. An outer tubing surrounds the braided structure. The outer tubing includes a proximal end attached to the connector assembly and a distal end attached to the braided structure near the electrode assembly. A proximal tension force applied to the connector assembly acts substantially on the outer tubing and the conductor assembly and a proximal tension force applied to the free floating proximal end acts substantially on the braided structure.