摘要:
The invention relates to a method for specifying or determining the spatial position of a distance reference point and/or a near reference point of a progressive spectacle lens for correcting defective vision of a spectacle wearer. Said method consists of the following steps: individual data of the spectacle wearer is obtained; the individual vertical and/or the horizontal position of the distance reference point and/or the near reference point is determined or calculated in accordance with the determined individual data of the spectacle wearer.
摘要:
The invention relates to a method for specifying or determining the spatial position of a distance reference point and/or a near reference point of a progressive spectacle lens for correcting defective vision of a spectacle wearer. Said method consists of the following steps: individual data of the spectacle wearer is obtained; the individual vertical and/or the horizontal position of the distance reference point and/or the near reference point is determined or calculated in accordance with the determined individual data of the spectacle wearer.
摘要:
A method and device for calculating design parameters of a design of a progressive spectacle lens on the basis of a predetermined design polygon. The design parameters are calculated by specifying a point within the design polygon, in which the specified point defines the progressive spectacle lens design, and then determining a value of each design parameter at the specified point by an interpolation of at least part of the predetermined values at the corner points and, optionally, of at least part of the predetermined values of the design parameter at the at least one additional point.
摘要:
A method and device for calculating design parameters of a design of a progressive spectacle lens on the basis of a predetermined design polygon. The design parameters are calculated by specifying a point within the design polygon, in which the specified point defines the progressive spectacle lens design, and then determining a value of each design parameter at the specified point by an interpolation of at least part of the predetermined values at the corner points and, optionally, of at least part of the predetermined values of the design parameter at the at least one additional point.
摘要:
A method of producing a progressive spectacle glass by defining an ordering value for the average use value in the far reference point of the progressive spectacle glass, calculating the progressive spectacle glass while taking into account a calculation value of the average use value in the far reference point, the calculation value having a negative desired refraction deviation between 0.03 dpt and 0.2 dpt with respect to the ordering value in the far reference point, and producing the calculated progressive spectacle glass.
摘要:
A method of producing a progressive spectacle glass by defining an ordering value for the average use value in the far reference point of the progressive spectacle glass, calculating the progressive spectacle glass while taking into account a calculation value of the average use value in the far reference point, the calculation value having a negative desired refraction deviation between 0.03 dpt and 0.2 dpt with respect to the ordering value in the far reference point, and producing the calculated progressive spectacle glass.
摘要:
A double-progressive spectacle lens in which the progressive action is distributed over the front and rear surfaces of the double-progressive spectacle lenses and described by the quotient Q Q=Addvfl/AddGesamt where Addvfl represents the increase in the surface dioptric power along the principal line on the front surface between the distance area and the near area, and ADDGesamt represents the increase in the total dioptric power along the principal line between the distance area and the near area, and the fraction Q increases with growing distance area effect F: ⅆ Q ( F ) ⅆ F ⩾ 0.
摘要:
A spectacle lens comprises a region (distance portion) designed for viewing at greater distances, in particular, to infinity; a region (near portion) designed for viewing at short distances and, in particular, “reading distances”; and a progression zone located between the distance portion and the near portion, in which the power of the spectacle lens increases from a value at the distance reference point located in the distance portion to the value at the near reference point located in the near portion along a line (principal meridian) curving towards the nose. It is one of the characteristics of the invention that for minimizing the change of imaging properties with horizontal movements of the gaze along a curve described by the points of penetration of the principal rays through the front surface, these principal rays passing through a point having the coordinates (x−dx, y, s) at the beginning of the movement and a point having the coordinates (x +dx, y, s) at the end of the movement, at s=−40 mm and dx=10 mm particular conditions apply.
摘要:
A spectacle lens is provided with a region (distance portion) designed for viewing at greater distances and, in particular, “to infinity”, a region (near portion) designed for viewing at short distances and, in particular, “reading distances”, and a progression zone disposed between the distance portion and the near portion, in which the power of the spectacle lens increases from the value in the distance reference point located in the distance portion to the value at the near reference point located in the near portion along a line (principal meridian) curving towards the nose. The invention is marked by specific conditions for the astigmatic deviation and/or the mean “as worn” power being observed.
摘要:
A double-progressive spectacle lens in which the progressive action is distributed over the front and rear surfaces of the double-progressive spectacle lenses and described by the quotient Q Q=Addvfl/AddGesamt where Addvfl represents the increase in the surface dioptric power along the principal line on the front surface between the distance area and the near area, and ADDGesamt represents the increase in the total dioptric power along the principal line between the distance area and the near area, and the fraction Q increases with growing distance area effect F: ⅆ Q ( F ) ⅆ F ⩾ 0.