摘要:
A method of steelmaking in an at least partially refractory lined furnace. The process includes the steps of retaining a portion of a hot liquid slag from a previous heat, and altering the retained slag with basic slag forming material to increase its basicity, melting temperature, and viscosity, and to reduce its melting temperature below the melting point. The altering step is performed before charging ferrous materials for a new heat. Altered slag is then positioned on the bottom of the furnace, or on the furnace walls, or both, using a slag coating technique. Ferrous metal is then charged, after which a second charge of basic slag forming materials may be added prior to and/or during the first controllable oxygen blow. A slagging off step is conducted after less than one-half of the oxygen is introduced into the heat and when the mass of oxygen already introduced is sufficient to oxidize approximately all of the silicon introduced with hot liquid metal charged into the furnace.
摘要:
A method of applying a hot composite on top of the refractory lining of steel making and processing vessels is disclosed. The composite may be applied to the refractory wall in more than one layer, including a dense intermediate layer for adhesion, and a less dense layer on top that is designed to be consumed as a slag-forming component during steel making and refining. The composite is applied by discharging a carrier gas containing a mixture of small particles, including particles of silica, particles of at least one high-temperature oxide based material and particles of solid carbonaceous fuel, through a carrier gas discharge nozzle. Additional substances may be added to the mixture to enhance the slag-forming process. A controllable flow of oxidizing gas is charged at high and preferably supersonic speed through an essentially crescent-shaped nozzle partially surrounding the carrier gas discharge nozzle. The carbonaceous fuel is ignited and rapidly burned, causing silica based material to become fluid and to coat the high-temperature oxide particles, thereby enhancing the adhering properties of said hot particles and facilitating the reaction of high-temperature oxide with the silica. The resulting hot gaseous mixture and hot particles are impacted on the refractory wall, where at least some of the hot particles adhere. By controlling the flow of oxidizable gas, the supply of fuel, or both, the amount of solid carbon in the composite applied to the refractory wall, and hence, the porosity of the deposit, is controlled.
摘要:
A method of thermal decontamination of organic wastes in which the waste is treated in a primary incinerator by a heat source such that solid residue is collected from the incinerator and exhaust fumes then participate in an industrial thermal process by being directed to an industrial containment by combusting the exhaust gases together with fuel and an oxidizer with oxygen concentration in excess of air to decontaminate the exhaust gases and using the heat produced in the industrial process.
摘要:
A method of melting and refining metals by high-temperature impinging combustion products generated by a single or multiple oxy-fuel or fuel/oxygen/air combustors that direct a flame towards a predetermined area of scrap to be melted. Once a portion of charged scrap contacted by the flame or flames is melted, an injection of solid carbonaceous fuel is initiated, preferably through a combustion tunnel of at least one of the combustors. High velocity oxygen is directed, simultaneously with carbonaceous material, through at least one dedicated nozzle toward injected solid carbonaceous fuel to mix with this fuel and to generate CO, which is capable of forming foamy slag. Optionally, a supersonic stream of multiple streams of additional oxygen is directed toward the iron--carbon melt to initiate rapid melt refining.
摘要:
A burner/injector for providing a localized impingement flame or multiple flames for scrap heating and melting through use of a fluid fuel and at least one oxygen rich oxidizing gas. The burner/injector includes a liquid-cooled combustor for generating an impinging flame directed toward a scrap pile and a structure for injecting a controllable amount of a solid carbonaceous fuel and a controllable flow of high velocity oxidizing gas into space that has been previously occupied by the impinging flame. The burner/injector may be equipped to inject a solid slag forming materials and/or slag deoxidizing materials, and/or to inject an additional oxidizing gas for burning a small portion of preheated scrap, post-combustion of CO and iron-carbon melt refining. The burner/injector may be arranged as a simple liquid-cooled combustor permanently mounted through the furnace wall or roof, and may be equipped with single or multiple channels for injection of solid material and high velocity oxidizing gas. Separate injecting lances for high velocity oxidizing gas and/or solid carbonaceous fuel may be mounted on the furnace. Both the lances and the combustors may be equipped with a nozzles for additional injection of the additional oxidizing gas. The burner/injector means can also be arranged as a water-cooled burner/injector lance accompanied with a water-cooled oxygen injecting lance, both movable through the slag door opening toward the furnace interior, wherein the combustor of the burner/injector lance may optionally be arranged (without the use of the combustion chamber) as an external combustion device.
摘要:
A method of recovering sulfur from gaseous materials containing hydrogen sulfide is provided having the steps of reacting a first gaseous material with first oxidizing gas in a first reaction step to form first products of incomplete combustion including primary gaseous sulfur, sulfur dioxide and uncombusted hydrogen sulfide; cooling said first products of incomplete combustion in first cooling means; directing a first fraction of the cooled first products of incomplete combustion to first condensing means; condensing the first reaction of the cooled first products of incomplete combustion in the first condensing means to form collectable sulfur and gaseous product; reacting the gaseous products leaving the first condensing means and the remaining fraction of the cooled first products of incomplete combustion with second oxidizing gas in a second reaction step to form second products of incomplete combustion including gaseous sulfur; cooling the second products of incomplete combustion in second cooling means; and condensing the second gaseous sulfur from the cooled second products of incomplete combustion in second condensing means to form collectable sulfur.
摘要:
A burner/injector for providing a localized impingement flame or multiple flames for scrap heating and melting through use of a fluid fuel and at least one oxygen rich oxidizing gas. The burner/injector includes a liquid-cooled combustor for generating an impinging flame directed toward a scrap pile and a structure for injecting a controllable amount of a solid carbonaceous fuel and a controllable flow of high velocity oxidizing gas into space that has been previously occupied by the impinging flame. The burner/injector may be equipped to inject a solid slag forming materials and/or slag deoxidizing materials, and/or to inject an additional oxidizing gas for burning a small portion of preheated scrap, post-combustion of CO and iron-carbon melt refining. The burner/injector may be arranged as a simple liquid-cooled combustor permanently mounted through the furnace wall or roof, and may be equipped with single or multiple channels for injection of solid material and high velocity oxidizing gas. Separate injecting lances for high velocity oxidizing gas and/or solid carbonaceous fuel may be mounted on the furnace. Both the lances and the combustors may be equipped with a nozzles for additional injection of the additional oxidizing gas.
摘要:
The invention relates to an afterburner apparatus and an incineration system and methods of waste destruction in primary incineration combustion means and afterburner means which both preferably utilize at least two different oxidizing gases. By varying the ratio of said oxidizing gases, the amount of total oxygen and nitrogen delivered in either means can be dynamically adjusted in accordance with the process requirements. Varying the flows of at least two oxydizing gases and auxiliary fuel in both the primary incinerator and afterburner makes it possible to operate the system under fluctuating waste loading conditions, by controlling temperature, partial pressure of oxygen and heat available for the process as a function of said ratio.
摘要:
A method and device for incinerating hazardous waste, having a first rotating section for transporting hazardous waste within the device, the first rotating section having a forward opening at a first end thereof for introducing hazardous waste into the device and an exit opening at a second end thereof, a second rotating section for further transporting hazardous waste within the device, the second rotating section having a forward opening at a first end thereof and an exit opening at a second end thereof, wherein the exit opening of the first rotating section is in flow communication with the forward opening of the second rotating section, first burning means for heating and at least partially volatizing hazardous waste in the first rotating section, second burning means for increasing the temperature of solid residue in at least one additional rotating section to further convert the hazardous waste into decontaminated solid ash and flue gas, means for collecting the decontaminated residue, solid ash from the device and means for removing and decontaminating flue gases from the device prior to discharge in the environment.
摘要:
A method and apparatus is disclosed for high intensity treatment of solid particles in a combustion chamber (10) by introducing the particles into the combustion chamber (10) as a plurality of streams (30, 32, 34, 36) wherein fuel is introduced to the combustion chamber within the area formed by the streams of particles and fuel is also introduced into said combustion chamber so that it surrounds the stream of particles, and by introducing oxidizing gas into the combustion chamber so that the oxidizing gas mixes with and combusts the fuel to produce a first high intensity flame located within the area formed by the particle streams and a second high intensity flame surrounding the particle streams.