Abstract:
Apparatus and methods for debinding articles. The apparatus and methods may transform binder from furnace exhaust before the exhaust is discharged to the atmosphere. The apparatus may include a furnace retort and a reactor. The furnace retort may be configured to: exclude ambient air; and receive a carrier gas. The reactor may be configured to: receive from the retort (a) the carrier gas and (b) material removed in the retort from the article; and combust, at a temperature no greater than 750° C., the material. The material may be decomposed binder. The material may be hydrocarbon from binder that is pyrolyzed in the retort. The carrier gas may include gas that is nonflammable gas.
Abstract:
A dynamic modular neural network (DMNN) for NOx emission prediction in MSWI process is provided. First, the input variables are smoothed and normalized. Then, a feature extraction method based on principal component analysis (PCA) was designed to realize the dynamic division of complex conditions, and the prediction task to be processed was decomposed into sub-tasks under different conditions. In addition, aiming each sub-tasks, a long short-term memory (LSTM)-based sub-network is constructed to achieve accurate prediction of NOx emissions under various working conditions. Finally, a cooperative strategy is used to integrate the output of the sub-networks, further improving the accuracy of prediction model. Finally, merits of the proposed DMNN are confirmed on a benchmark and real industrial data of a municipal solid waste incineration (MSWI) process. The problem that the NOx emission of MSWI process is difficult to be accurately predicted due to the sensor limitation is effectively solved.
Abstract:
Disclosed herein are systems, apparatuses, and methods for using a sensed combustion zone temperature to continuously control combustion of a first (main) gas within an enclosed combustor. The combustor is in fluid communication with a first gas line carrying the first gas, a second gas line independent of the first gas line carrying a second (assist) gas having a higher heating value than the first gas, and air dampers providing draft or assist air. The first gas may be vapors from a production source or tank. A computer control system monitors the combustion zone temperature of the enclosed combustor as sensed by a sensor in electronic communication with the computer control system and controls the combustion zone temperature by changing a condition of a first gas line valve of the first gas line, a second gas line valve of the second gas line, and the air dampers.
Abstract:
A boiler apparatus for waste incineration includes a combustion chamber having a waste inlet formed on one side and combustion spaces for incinerating the introduced waste. Air injection pipes are vertically spaced apart from one another from a lower part of the combustion chamber, extend along the circumference thereof, and have injection holes to inject air toward the center of the combustion spaces. An air supply unit supplies air to each of the air injecting pipes separately, in response to a control signal. Temperature sensors are mounted in the combustion spaces in respective stages vertically divided on the basis of the air injecting pipes, to measure a combustion temperature of the combustion space within the combustion chamber. A control module controls operation of the air supply unit, to control an injection amount of air fed to the combustion space according to a combustion temperature measured by each temperature sensor.
Abstract:
A method includes combustion products from combustion of fuel with oxidant brought first through a first heat exchanging step (150;201), in which thermal energy is transferred from the combustion products to the fuel which is thereby preheated, and the cooled combustion products thereafter are brought through a second heat exchanging step (151;203), in which thermal energy is transferred from the cooled combustion products to the oxidant which is thereby also preheated. A related system for preheating the fuel and oxidant is also provided.
Abstract:
A waste-to-energy conversion apparatus comprising a primary combustion chamber capable of holding a load of waste, and the primary combustion chamber further comprises a heat source to heat the waste and generate a syn gas stream, grates, within the primary chamber, capable of supporting the load of waste during heating, a mixing chamber wherein the syn gas is mixed with additional combustion gas, a multi-chambered secondary combustion chamber for combusting the mixture of syn gas and additional combustion gas, and an energy extraction system for extracting the heat energy generated by the combustion of the mixture of syn gas and additional combustion gas.
Abstract:
The present invention may be embodied as a biofuel heating system comprising a controller for operating a fan based on a load operating parameter such that air flows along a flow path extending through a combustion chamber, through a burn-out port, through a burn-out chamber, through a heat exchange port, through a heat exchange chamber, and out of an exhaust port. A heat exchange system transfers heat energy from air flowing through the heat exchange chamber to a working fluid. The controller operates in a char mode based at least in part on the load operating parameter, and the biofuel remains within the combustion zone during the char mode.
Abstract:
The present invention relates to a system and a method for diagnosing and controlling an incineration facility and managing the life cycle thereof through a heat exchange and design program and an operation mode analysis of an operator of the incineration facility, and the purpose of the present invention is to improve operation efficiency by comparing and analyzing initial design values (a) of the incineration facility, measured actual values (b) obtained by measuring waste composition and heating values changed after constructing the incineration facility, and operation values (c) indicating output values which are actual operating adjustment values and operating result values operated by the operator and by analyzing operation modes of the operator. The system for diagnosing and controlling an incineration facility and managing the life cycle thereof through a heat exchange and design program and an operation mode analysis for an operator of the incineration facility, according to the present invention, comprises: a database for storing, in a predetermined period of time, the operation values (c) according to an operation of the operator, which are detected by incineration facility operating sensors (10) and provided through an MMI, the incineration facility operating sensors (10) detecting operation values of the incineration facility, which include a primary amount of combustion air, a secondary amount of combustion air, a fire grate moving speed, a temperature, an amount of discharged gas and an amount of steam, outputted by an operation of the operator, the design values (a) according to the design of the incineration facility, which are calculated through the heat exchange program, and the measured actual values (b) according to an operation of the incineration facility constructed under the design; and a server for extracting design values, measured actual values and operation values on the basis of data stored in the database and extracting and providing the design values, the measured actual values and the operation values as data including comparable graphs and tables.
Abstract:
This method for inhibiting the occurrence of a pyrolysis deposit in a pyrolysis gasification system includes: gasifying biomass (S2) through pyrolysis in a pyrolysis gasification furnace (5); separating, in a solid-gas separation unit (7), a pyrolysis gas (G1) and a carbide (C) continuously formed through pyrolysis of the biomass (S2); feeding an oxygen-containing gas (G3) to the separated pyrolysis gas (G1); and introducing the pyrolysis gas (G1) together with the oxygen-containing gas (G3) to a combustion furnace (6) through a pipe (9) which constitutes a pyrolysis gas line (8).
Abstract:
A method and apparatus for remediating porous contaminated material. In the method, fuel material is combined with the contaminated material and a smoldering combustion process is initiated in the contaminated material to remediate the contaminated material. Control systems are provided to control the smoldering combustion process. The contaminated material may include oily waste, asbestos fibers, and/or at least one of a chlorinated solvent, a polychlorinated biphenyl (PCB), a dioxin, a furan and a polynuclear aromatic hydrocarbon (PAH).