摘要:
Absorbing layers of a low-emissivity (low-E) coating are designed to cause the coating to have a reduced film side reflectance which is advantageous for aesthetic purposes. In certain embodiments, the absorbing layers are metallic or substantially metallic (e.g., NiCr or NiCrNx) and are positioned in order to reduce or prevent oxidation of the absorbing layers during optional heat treatment (e.g., thermal tempering, heat bending, and/or heat strengthening). Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, other types of windows, etc.
摘要:
A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
摘要:
This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 60%, more preferably no greater than about 55%, and most preferably no greater than about 50%).
摘要:
Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
摘要:
Absorbing layers of a low-emissivity (low-E) coating are designed to cause the coating to have a reduced film side reflectance which is advantageous for aesthetic purposes. In certain embodiments, the absorbing layers are metallic or substantially metallic (e.g., NiCr or NiCrNx) and are each provided between first and second nitride layers (e.g., silicon nitride based layers) in order to reduce or prevent oxidation of the absorbing layers during optional heat treatment (e.g., thermal tempering, heat bending, and/or heat strengthening). Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, other types of windows, etc.
摘要:
Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
摘要:
A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
摘要:
A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
摘要:
Absorbing layers of a low-emissivity (low-E) coating are designed to cause the coating to have a reduced film side reflectance which is advantageous for aesthetic purposes. In certain embodiments, the absorbing layers are metallic or substantially metallic (e.g., NiCr or NiCrNx) and are each provided between first and second nitride layers (e.g., silicon nitride based layers) in order to reduce or prevent oxidation of the absorbing layers during optional heat treatment (e.g., thermal tempering, heat bending, and/or heat strengthening). Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, other types of windows, etc.
摘要:
A coated article is provided which may be heat treated (e.g., thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.