摘要:
A hydrokinetic torque converter with a built-in bypass clutch is provided with an arrangement which regulates the cooling of the clutch at a rate dependent upon the slip between the coaxial driving and driven parts of the clutch, and hence upon the quantity of generated friction heat. The cooling unit for the driving and/or driven part of the clutch can employ, for example, one or more pumps; a supply of a substance which changes its aggregate state from liquid to gaseous or from solid to flowable in response to heating, and vice versa in response to cooling; one or more porous washers in the path for the flow of hydraulic fluid between the customary plenum chambers provided in the housing of the torque converter to move a piston of the driven part of the clutch into and from frictional engagement with the housing; and/or a system of recesses, grooves, channels and/or other passages serving to convey fluid between the chambers at a rate which is higher or highest when the clutch operates with maximum slip. Such rate can decrease to zero when the torque converter is idle or the clutch is fully engaged to operate without slip.
摘要:
A hydrokinetic torque converter with a built-in bypass clutch is provided with an arrangement which regulates the cooling of the clutch at a rate dependent upon the slip between the coaxial driving and driven parts of the clutch, and hence upon the quantity of generated friction heat. The cooling unit for the driving and/or driven part of the clutch can employ, for example, one or more pumps; a supply of a substance which changes its aggregate state from liquid to gaseous or from solid to flowable in response to heating, and vice versa in response to cooling; one or more porous washers in the path for the flow of hydraulic fluid between the customary plenum chambers provided in the housing of the torque converter to move a piston of the driven part of the clutch into and from frictional engagement with the housing; and/or a system of recesses, grooves, channels and/or other passages serving to convey fluid between the chambers at a rate which is higher or highest when the clutch operates with maximum slip. Such rate can decrease to zero when the torque converter is idle or the clutch is fully engaged to operate without slip.
摘要:
A hydrokinetic torque converter with a built-in bypass clutch is provided with an arrangement which regulates the cooling of the clutch at a rate dependent upon the slip between the coaxial driving and driven parts of the clutch, and hence upon the quantity of generated friction heat. The cooling unit for the driving and/or driven part of the clutch can employ, for example, one or more pumps; a supply of a substance which changes its aggregate state from liquid to gaseous or from solid to flowable in response to heating, and vice versa in response to cooling; one or more porous washers in the path for the flow of hydraulic fluid between the customary plenum chambers provided in the housing of the torque converter to move a piston of the driven part of the clutch into and from frictional engagement with the housing; and/or a system of recesses, grooves, channels and/or other passages serving to convey fluid between the chambers at a rate which is higher or highest when the clutch operates with maximum slip. Such rate can decrease to zero when the torque converter is idle or the clutch is fully engaged to operate without slip.
摘要:
A hydraulic torque converter, particularly for use in a motor vehicle between the prime mover and the transmission of the power train, employs a combination of a bypass clutch with one or more torsional vibration dampers which brings about savings in space and/or in the number of parts. In addition, the torque converter can stand long periods of use and is less prone to wear, adverse influences of abruptly developing stresses and/or other undesirable influences than conventional torque converters. Furthermore, the improved torque converter employs or can employ a bypass clutch and/or one or more torsional vibration dampers simpler and less expensive than but superior to those in conventional torque converters.
摘要:
A hydraulic torque converter, particularly for use in a motor vehicle between the prime mover and the transmission of the power train, employs a combination of a bypass clutch with one or more torsional vibration dampers which brings about savings in space and/or in the number of parts. In addition, the torque converter can stand long periods of use and is less prone to wear, adverse influences of abruptly developing stresses and/or other undesirable influences than conventional torque converters. Furthermore, the improved torque converter employs or can employ a bypass clutch and/or one or more torsional vibration dampers simpler and less expensive than but superior to those in conventional torque converters.
摘要:
A hydraulic torque converter, particularly for use in a motor vehicle between the prime mover and the transmission of the power train, employs a combination of a bypass clutch with one or more torsional vibration dampers which brings about savings in space and/or in the number of parts. In addition, the torque converter can stand long periods of use and is less prone to wear, adverse influences of abruptly developing stresses and/or other undesirable influences than conventional torque converters. Furthermore, the improved torque converter employs or can employ a bypass clutch and/or one or more torsional vibration dampers simpler and less expensive than but superior to those in conventional torque converters.
摘要:
A hydraulic torque converter, particularly for use in a motor vehicle between the prime mover and the transmission of the power train, employs a combination of a bypass clutch with one or more torsional vibration dampers which brings about savings in space and/or in the number of parts. In addition, the torque converter can stand long periods of use and is less prone to wear, adverse influences of abruptly developing stresses and/or other undesirable influences than conventional torque converters. Furthermore, the improved torque converter employs or can employ a bypass clutch and/or one or more torsional vibration dampers simpler and less expensive than but superior to those in conventional torque converters.
摘要:
Overheating of various parts of a hydraulic torque converter between the engine and the transmission of the power train in a motor vehicle, wherein the torque converter employs a bypass clutch which generates heat when it is operated with slip, is counteracted by establishing one or more paths for the flow of hydraulic converter fluid from a first plenum chamber at one side of the axially movable piston of the bypass clutch to a second plenum chamber. A first portion of each such path is defined by at least one groove in a friction surface of at least one part of the bypass clutch, and a second portion of each such path is defined by one or more throttling orifices which offers or offer to the fluid flow a resistance several times that of the groove(s).
摘要:
The invention relates to a torque transmission device with a clutch disk or friction plate that is connected by way of positive locking sections to an input part of a torsional vibration damping device so that they turn together but it can be slid axially. In order to produce a torque transmission device, by which the shifting quality of a converter bridge clutch in a hydrodynamic torque converter can be improved, the input part of the torsional vibration damping device has, in the circumferential direction between two positive locking sections, a seat area for one end of a spring shackle that extends from the clutch disk.
摘要:
The hydrokinetic torque converter between the prime mover and the transmission in the power train of a motor vehicle is designed to promote and/or otherwise regulate the flow of hydraulic fluid therethrough. The fluid is circulated between the friction linings on the laminations of the bypass clutch in the housing of the torque converter. In a first embodiment of the method, the flow of fluid in certain parts of the torque converter is opposed or interfered with in such a way that a larger quantity of fluid flows between the laminations of the bypass clutch. In a second embodiment, the resistance to fluid flow through the bypass clutch of the torque converter is reduced. It is also possible to resort to both solutions in one and the same torque converter.