Abstract:
An actuator system can include a first actuator, a second actuator, a first actuator control device configured to control the first actuator, a second actuator control device configured to control the second actuator, a shared redundant actuator control device, and at least one transfer device operatively connected to the first, second, and shared redundant actuator control devices. The at least one transfer device can be configured to be operated to select between a first control mode where the first actuator control device is operatively connected to the first actuator to control the first actuator and the second actuator control device is operatively connected to the second actuator to control the second actuator, a second control mode where the shared redundant actuator control device is operatively connected to the first actuator to control the first actuator and the second actuator control device is operatively connected to the second actuator to control the second actuator, and a third control mode where the first actuator control device is operatively connected to the first actuator to control the first actuator and the shared redundant actuator control device is operatively connected to the second actuator to control the second actuator.
Abstract:
A system includes a flow inlet conduit and a primary conduit that branches from the flow inlet conduit for delivering flow to a set of primary nozzles. An equalization bypass valve (EBV) connects between the flow inlet conduit and a secondary conduit for delivering flow to a set of secondary nozzles. The EBV is connected to an equalization conduit (EC). A pressure equalization solenoid is connected to the EC to selectively connect a servo supply pressure conduit and/or a return pressure (PDF) conduit into fluid communication with the EC. An EBV rate limiting orifice (RLO) is connected in the PDF conduit. A bypass conduit branches from the PDF conduit on a first side of the EBV RLO and reconnects to the PDF conduit on a second side of the EBV RLO. An orifice bypass valve (OBV) is connected to the bypass conduit and acts to selectively bypass the EBV RLO.
Abstract:
A transfer valve includes a spool comprising a first circumferential flow channel at a first axial position of the spool and a second circumferential flow channel at a second axial position of the spool. The first circumferential flow channel and the second circumferential flow channel have different circumferential positions and are defined only partially circumferentially, and a sleeve disposed over the spool. The sleeve includes at least three flow windows defined through the sleeve at an axial position of the sleeve, each flow window having different circumferential positions on the sleeve. The spool is configured to translate within the sleeve between a first position and a second position. The first circumferential flow channel of the spool is configured to fluidly connect a first plurality of the at least three windows in the first position, and the second circumferential flow channel is configured to connect a second plurality of the at least three windows in the second position, wherein the first plurality of windows is different by at least one window from the second plurality of windows.
Abstract:
A valve has a sleeve with at least one outlet port in a radially outer surface. A piston is moveable within the sleeve along an axis. The piston has a lip on a radially outer portion extending forwardly to an axially forward most end and a recess radially inward from the lip with respect to an axis of the piston. A vane pump is also disclosed.
Abstract:
A movable vane control system is disclosed for use with a gas turbine engine having a turbine axis of rotation. The system includes a plurality of rotatable turbine vanes in a gas flow path within a turbine case of the gas turbine engine. A first vane position sensor having a first distance sensor is configured to sense the distance between the first distance sensor and a surface portion of a first of said plurality of vanes or a first movable target connected to the first vane. Additionally, the first distance sensor, the first vane surface portion, the first movable target, or a combination thereof is configured to provide a variable distance between the first distance sensor and the first vane surface portion or first movable target that varies as a function of a position of the first vane.
Abstract:
A flexure includes a flexure body with an inner ring defining a main axis and an outer ring extending about the inner ring that is outboard of the inner ring with respect to the main axis. One or more flexure members having respective lengths that are greater than a radial offset distance defined between the inner ring and the outer ring connects the inner ring to the outer ring. A valve includes a valve member connected to a valve body by the flexure.
Abstract:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end located radially outwardly of the second structure. Further included is a first sealing assembly configured to couple the sensor body to the second structure and to accommodate movement of the sensor body due to relative movement between the first and second structures. Yet further included is an interior cavity of the sensor body, a linear position sensor operatively coupled to the sensor body, and a rotary linkage assembly located within the interior cavity and coupled to a target. Also included is a rotary-to-linear interface disposed between the rotary linkage assembly and the sensor and configured to convert rotational motion of the rotary linkage assembly to linear motion.
Abstract:
A measuring system for sensing vane positions that comprises a turbine, a target, and a sensor. The turbine includes a plurality of articulating vanes, with each vane being coupled to a sync ring that is configured to position the plurality of articulating vanes in accordance with a degree of rotation by the sync ring. The target is coupled to a first position of the turbine within a first region that is associated with a first vane of the plurality of articulating vanes. The sensor is coupled via a bracket to a second position of the turbine within the first region. The sensor is configured to detect an orientation of the target that corresponds to a vane position of the first vane.
Abstract:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end disposed in an ambient environment. Further included is a first sealing assembly configured to couple the sensor body to the second structure and to accommodate movement of the sensor body due to relative movement between the first and second structures. Yet further included is an interior cavity defined by an interior wall of the sensor body and a rotary position sensor mounted to the sensor body proximate the second end of the sensor body, the rotary position sensor configured to detect an angular position of a target disposed within the first environment, the rotary position sensor coupled to the target with a sensor linkage assembly.
Abstract:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end located radially outwardly of the second structure. Further included is a first sealing assembly configured to couple the sensor body to the second structure and to accommodate movement of the sensor body due to relative movement between the first and second structures. Yet further included is an interior cavity of the sensor body, a linear position sensor operatively coupled to the sensor body, and a rotary linkage assembly located within the interior cavity and coupled to a target. Also included is a rotary-to-linear interface disposed between the rotary linkage assembly and the sensor and configured to convert rotational motion of the rotary linkage assembly to linear motion.