Abstract:
A detector device is disclosed for detecting an edge of a medium in a media processing system, the detector device comprising a spectrophotometer and a processing unit, the spectrophotometer scanning a medium in a media processing area and generating an output tuple, the processing unit comparing the output tuple to at least one reference tuple for detecting an edge of a medium. A printing system and method of detecting an edge of a medium in a media processing system are also disclosed.
Abstract:
A printing system with adaptive printhead temperature control, comprises a least one printhead for inkjet printing; heating means to heat said printhead or ink in said printhead to a predetermined temperature range; and control means to analyze content information of a print job to be printed, wherein said control means sets said predetermined temperature range and sets a heating power of said heating means at a given position of said printhead in accordance with content information relating to an entire print page of said print job, or a plurality of print pages of said print job.
Abstract:
A printing system with adaptive printhead temperature control, comprises a least one printhead for inkjet printing; heating means to heat said printhead or ink in said printhead to a predetermined temperature range; and control means to analyze content information of a print job to be printed, wherein said control means sets said predetermined temperature range and sets a heating power of said heating means at a given position of said printhead in accordance with content information relating to an entire print page of said print job, or a plurality of print pages of said print job.
Abstract:
Examples are provided to methods to dynamically control the timing of a printing fluid drop ejection to deposit printing fluid on a print zone of a substrate. The examples may also provide measuring a height profile of a pre-print zone.
Abstract:
A measured distance is received from a distance sensor, where the measured distance is indicative of a distance between a color sensor and a substrate. Using the measured distance, a location of a given projection of projections of a substrate support is determined. A color of a color patch on the substrate at the determined location of the given projection is determined.
Abstract:
Example implementations relate to color compensation. Some examples may print a calibration target background on a non-opaque media. The calibration target background may have a color that increases a dynamic range of a set of color measurements of a calibration target foreground. Some examples may print the calibration target foreground over the calibration target background. Additionally, some examples may measure an optical density of the calibration target foreground with a reflective sensor and may calibrate a printer based on the measured optical density.
Abstract:
Techniques related to printing are described herein. According to an example, color patches are to be printed on a substrate. The substrate can be positioned on a substrate support for operation of a color sensor in a color measurement zone. Dimension and location in the substrate of the color patches are selected such that, for each color patch, at least a portion of the color patch can be positioned on a support projection in the color measurement zone. In some examples, color analysis techniques are described.
Abstract:
The optical density of a first primary color is determined using two test patches. The first patch is printed with only the first primary color and a second primary color. The second patch is printed using the first primary color and a second primary color. The optical density of both patches is measured. The optical density of the first primary color is determined using the measured optical density of the second primary color and the measured optical density of the first patch.
Abstract:
The optical density of a first primary color is determined using two test patches. The first patch is printed with only the first primary color and a second primary color. The second patch is printed using the first primary color and a second primary color. The optical density of both patches is measured. The optical density of the first primary color is determined using the measured optical density of the second primary color and the measured optical density of the first patch.
Abstract:
Examples are provided to methods to dynamically control the timing of a printing fluid drop ejection to deposit printing fluid on a print zone of a substrate. The examples may also provide measuring a height profile of a pre-print zone.