Abstract:
An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
Abstract:
An example device includes a first semiconductor component comprising at least two lasers to emit light at a first wavelength; a second semiconductor component comprising at least two lasers to emit light at a second wavelength, the first wavelength being different from the second wavelength; and an optical multiplexer to receive light from two lasers at the first wavelength and light from two lasers at the second wavelength. The optical multiplexer component includes a first output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength to a first optical fiber, and a second output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength beams to a second optical fiber.
Abstract:
A device includes a first element and a second element. The first element includes a plurality of mirrors formed as concave features on the first element. The second element is to support a plurality of filters. The first element is coupleable to the second element to align the plurality of mirrors relative to the plurality of filters to operate as a multiplexer or de-multiplexer.
Abstract:
In the examples provided herein, an apparatus has a first substrate upon which one or more first filters have been fabricated on a first surface of the first substrate. The apparatus also has a second substrate upon which one or more second filters have been fabricated on a second surface of the second substrate, wherein the one or more first filters and the one or more second filters each transmit a different band of wavelengths. Additionally, the apparatus has a bonding material that bonds the first substrate to the second substrate.
Abstract:
In example implementations, an apparatus is provided. The apparatus includes an optical transmission component and an optical reception component. The optical transmission component includes a plurality of lasers and a transmit filter. The plurality of lasers each emit a different wavelength of light. The transmit filter includes a plurality of different regions that correspond to one of the different wavelengths of light emitted by the plurality of lasers. The optical reception component includes a plurality of photodiodes and a complementary reverse order (CRO) filter. The CRO filter includes a same plurality of different regions as the transmit filter in a reverse order.
Abstract:
An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
Abstract:
An apparatus (2) can comprise an optical slab (4) comprising a rigid substrate of substantially transmissive material. The apparatus (2) can also comprise a WDM multiplexer (6) to receive and combine a plurality of optical signals (14, 16 and 20) at different wavelengths to form a combined optical signal (24) in the optical slab (4) having an aggregate power. The apparatus can further comprise a broadcaster (28) to distribute the combined optical signal (24) from the optical slab (4) to each of a plurality of different optical receivers (30, 32 and 34) with a fraction of the aggregate power of the combined optical signal (24).
Abstract:
In the examples provided herein, an apparatus has a first substrate upon which one or more first filters have been fabricated on a first surface of the first substrate. The apparatus also has a second substrate upon which one or more second filters have been fabricated on a second surface of the second substrate, wherein the one or more first filters and the one or more second filters each transmit a different band of wavelengths. Additionally, the apparatus has a bonding material that bonds the first substrate to the second substrate.
Abstract:
Optoelectronic systems with an adapter and methods of manufacturing or assembling the same are provided. An example of an optoelectronic system according to the present disclosure includes a substrate, an interposer, an electronic component disposed on the interposer, and an optical component. The optoelectronic system includes a ferrule and an optical fiber coupled to the ferrule. The optoelectronic system also includes an optical socket configured to receive the ferrule therein. The optoelectronic system further includes an adapter positioned between the interposer and the optical socket. The adapter has a wedge-shaped configuration such that the ferrule is disposed at a non-zero angle relative to the interposer when the ferrule is received in the optical socket and the optical socket is coupled to the adapter.
Abstract:
An apparatus (2) can comprise an optical slab (4) comprising a rigid substrate of substantially transmissive material. The apparatus (2) can also comprise a WDM multiplexer (6) to receive and combine a plurality of optical signals (14, 16 and 20) at different wavelengths to form a combined optical signal (24) in the optical slab (4) having an aggregate power. The apparatus can further comprise a broadcaster (28) to distribute the combined optical signal (24) from the optical slab (4) to each of a plurality of different optical receivers (30, 32 and 34) with a fraction of the aggregate power of the combined optical signal (24).