Abstract:
Certain methods and systems are described that allow the spectral control of a print output. A plurality of colorants are used where one or more colorants contain nanoparticles. Each colorants has a specified spectral range corresponding to the constituent nanoparticles. To print with these colorants a spectral separation may be used that maps an input color with associated spectral information or direct spectral information to print control data, the print control data having defined values for depositions with each combination of the colorants. The spectral separation may be constructed by characterizing a set of spectral Neugebauer primaries for the plurality of colorants.
Abstract:
Certain methods and systems are described for encoding data in an image. According to an example, a set of metamers under a first set of conditions may be determined that vary under a second set of conditions. These may be used to generate a set of color mappings for a sampled color value, each color mapping being used for a different data value in the data. As such the data values may be detectable when the image is observed under the second set of conditions but not detectable when the image is observed under the first set of conditions.
Abstract:
In some examples, a system generates three-dimensional (3D) object data for printing by a 3D printing system, the generating including determining a region in which to generate a wear indicator, and computing an arrangement of spatial shells of variable thickness in the region, where the spatial shells contain data representing at least one property of the wear indicator.
Abstract:
In some examples, a system generates three-dimensional (3D) object data for printing by a 3D printing system, the generating including determining a region in which to generate a wear indicator, and computing an arrangement of spatial shells of variable thickness in the region, where the spatial shells contain data representing at least one property of the wear indicator.
Abstract:
A method for generating a color mapping for a printing apparatus is described. The printing apparatus includes a plurality of colorants including a first colorant configured to reflect radiation having a first set of wavelengths and a second colorant configured to absorb radiation having a second set of wavelengths and emit radiation having a third set of wavelengths. The method includes obtaining spectral characteristics for the plurality of colorants, computing a gamut of colors available to the printing apparatus and determining a color mapping from an input color space to an output color space.
Abstract:
A method for generating a color mapping for a printing apparatus is described. The printing apparatus includes a plurality of colorants including a first colorant configured to reflect radiation having a first set of wavelengths and a second colorant configured to absorb radiation having a second set of wavelengths and emit radiation having a third set of wavelengths. The method includes obtaining spectral characteristics for the plurality of colorants, computing a gamut of colors available to the printing apparatus and determining a color mapping from an input color space to an output color space.
Abstract:
Certain methods and systems are described for encoding data in an image. According to an example, a set of metamers under a first set of conditions may be determined that vary under a second set of conditions. These may be used to generate a set of color mappings for a sampled color value, each color mapping being used for a different data value in the data. As such the data values may be detectable when the image is observed under the second set of conditions but not detectable when the image is observed under the first set of conditions.
Abstract:
A colorant for a printing apparatus is described. The colorant has a first component and a second component. The first component is configured to reflect radiation having a first set of wavelengths when the colorant is arranged on a substrate. The second component is configured to absorb radiation having a second set of wavelengths and emit radiation having a third set of wavelengths when the colorant is arranged on the substrate, the first and third set of wavelengths having at least one common wavelength.