Abstract:
According to an example, methods for forming three-dimensional (3-D) nano-particle assemblies may include depositing surface-enhanced spectroscopy (SES) elements onto respective tips of nano-fingers, in which the nano-fingers are arranged in sufficiently close proximities to each other to enable the tips of groups of adjacent ones of the nano-fingers to come into sufficiently close proximities to each other to enable the SES elements on the tips to be bonded together when the nano-fingers are partially collapsed. The methods also include causing the nano-fingers to partially collapse toward adjacent ones of the nano-fingers to cause a plurality of SES elements on respective groups of the nano-fingers to be in relatively close proximities to each other and form respective clusters of SES elements, introducing additional particles that are to attach onto the clusters of SES elements, and causing the clusters of SES elements to detach from the nano-fingers.
Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes a housing defining a first chamber and a substrate coupled to the housing. The substrate includes nanostructures positioned within the first chamber. The nanostructures are to react to the substance when exposed thereto. The device includes a first heater positioned within the first chamber. The heater is to heat at least a portion of the substance to ready the device for analysis.
Abstract:
A method for forming a surface-enhanced fluorescence spectroscopy (SEFS) apparatus may include depositing a plurality of surface-enhanced spectroscopy (SES) elements onto respective tips of a plurality of nano-fingers, wherein the nano-fingers are arranged in sufficiently close proximities to each other to enable the tips of a group of adjacent nano-fingers to come into sufficiently close proximities to each other to enable the SES elements on the tips to trap fluorescent probe molecules that are to bind with target molecules when the nano-fingers are partially collapsed.
Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes an orifice plate defining a first chamber. A substrate is coupled to the orifice plate. The substrate includes nanostructures positioned within the first chamber. The nanostructures are to react to the substance when exposed thereto. A seal is to enclose at least a portion of the first chamber to protect the nanostructures from premature exposure.