Abstract:
Provided is a structure including a first member (2); a second member (3) disposed opposite to the first member (2); and a glass layer (4) disposed between the first member (2) and the second member (3) so as to bond the first member (2) and the second member (3). A glass transition point of the glass layer (4) is lower than a temperature of the glass layer (4) under operation. In the glass layer (4), at least either of ceramic and metallic particles 4b, 4c is dispersed. In a temperature region lower than the glass transition point of the glass layer (4), a thermal expansion coefficient thereof falls in between thermal expansion coefficients of the first member (2) and the second member (3). This allows thermal strain caused within the structure (1) to be reduced when the structure (1) is operated at a higher temperature than a room temperature.
Abstract:
Provided are an atmospheric corrosion test procedure and an apparatus used for the test. The procedure involves a salt spray step for supplying salt content containing chloride ions on the surfaces of test pieces placed in a thermo-humidistat chamber and a subsequent dry-wet cyclic step including a dry sub-step for drying the surface of the test pieces in the thermo-humidistat chamber at a low relative humidity and a subsequent wet sub-step at a higher relative humidity than that in the dry sub-step, which are cycled. The salt content is supplied by spraying the salt water in the salt spray step. An exhaust step for removing the salt mist sprayed inside thermo-humidistat chamber is further inserted between the salt deposition step and the dry sub-step. The quantity of the salt content deposited on the surfaces of the test pieces is controlled by adjusting the quantity of the sprayed salt water.