Method of Preparing Biological Tissue Sample and Method of Observing Biological Tissue Section Sample

    公开(公告)号:US20200232891A1

    公开(公告)日:2020-07-23

    申请号:US16650970

    申请日:2017-10-25

    摘要: The invention provides a method of preparing a biological tissue sample and a method of observing a biological tissue section sample that enable stereoscopic observation of a biological tissue easily and rapidly without destroying a biological tissue piece. The method of observing a biological tissue sample according to the invention is a method in which stereoscopic morphology of a biological tissue sample is observed, and the method includes: cutting out a sample having a thickness of 15 to 50 μm from a sample block obtained by fixing, dehydrating, and paraffin-embedding a sample cut out from a biological tissue; transferring the sample to a surface-treated slide glass; stretching the sample on the slide glass; performing deparaffinization processing; then, staining the sample with a heavy metal-based staining agent; and observing the stained sample with a scanning electron microscope.

    Charged Particle Beam Device and Filter Member
    2.
    发明申请
    Charged Particle Beam Device and Filter Member 有权
    带电粒子束和过滤器

    公开(公告)号:US20160071685A1

    公开(公告)日:2016-03-10

    申请号:US14782695

    申请日:2014-03-05

    IPC分类号: H01J37/16 H01J37/26

    摘要: In a SEM device which enables observations under an atmospheric pressure, in the event that a diaphragm is damaged during an observation of a sample, air flows into a charged particle optical barrel from the vicinity of the sample, due to the differential pressure between the inside of the charged particle optical barrel under vacuum and the vicinity of the sample under the atmospheric pressure. At this time, the sample may be sucked into the charged particle optical barrel. In this case, a charged particle optical system and a detector are contaminated thereby, which causes performance degradation or failures of the charged particle microscope. For coping therewith, it is necessary to prevent the charged particle optical barrel from being contaminated, without inducing a time lag, with a simple structure. In a charged particle beam device adapted to place a sample in a non-vacuum environment, there is provided a filter member which is placed on the path of a primary charged particle beam at least in a state where the primary charged particle beam is directed to the sample and, further, is adapted to transmit or pass, therethrough, the primary charged particle beam and secondary charged particles derived from the sample, while intercepting at least a portion of a scattering substance which is scattered in the event of a fracture of the diaphragm.

    摘要翻译: 在能够在大气压下进行观察的SEM装置中,在样品观察期间膜片损伤的情况下,由于内部的压差,空气从样品附近流入带电粒子光学镜筒 的带电粒子光学筒在真空下和样品在大气压附近。 此时,样品可以被吸入带电粒子光学筒中。 在这种情况下,带电粒子光学系统和检测器被污染,导致带电粒子显微镜的性能下降或失效。 为了应对,需要以简单的结构防止带电粒子光学筒被污染,而不会引起时间滞后。 在适于将样品置于非真空环境中的带电粒子束装置中,设置有过滤构件,其至少在初级带电粒子束被引导到 样品,并且还适于透射或通过从样品衍生的初级带电粒子束和二次带电粒子,同时截留至少一部分在发生断裂的情况下散射的散射物质 隔膜