Abstract:
Systems and methods for using a searchlight unit to obtain elevation information about a point of interest are disclosed herein. The searchlight unit comprises an illumination source, a distance measurement system and an actuator for positioning the illumination source and for positioning the distance measurement system toward the point of interest. The searchlight unit also includes a global navigation satellite system and an inertial measurement unit for obtaining position and orientation information about the searchlight unit.
Abstract:
A non-isolated power supply is configured to receive an input voltage and supply an output voltage, and includes a supply line, a return line, a first semiconductor switch coupled in series in the supply line, and a second semiconductor switch coupled in series in the return line. The first and second semiconductor switches are each configured to operate in an ON state and an OFF state. The differential current sensor is configured to sense differential current between the supply line and the return line. The fault detection logic is coupled to the differential current sensor, the first semiconductor switch, and the second semiconductor switch, and is configured to detect when the differential current exceeds a predetermined current magnitude, and command the first and second semiconductor switches to operate in the OFF state upon detecting that the differential current exceeds the predetermined current magnitude.
Abstract:
A spherical electromagnetic machine includes a spherical stator, a plurality of longitudinal slots, a plurality of latitudinal slots, a plurality of longitudinal coils, a plurality of latitudinal coils, a first hemispherical shell rotor, and a second hemispherical shell rotor. The longitudinal slots and latitudinal slots are formed in, and are spaced evenly around, the outer surface. The longitudinal coils are disposed within a different one of the longitudinal slots. The latitudinal coils are disposed within a different one of the latitudinal slots. The first and second hemispherical shell rotors are mounted for rotation relative to the spherical stator body and have magnets on their inner surfaces. A Lorentz force causes movement of the first and second hemispherical shell rotors when electrical current is supplied to one or more of the longitudinal coils or to one or more of the latitudinal coils.
Abstract:
A light emitting diode (LED) lamp assembly includes a base including an electrical connector adapted to electrically engage a socket. A thermally conductive enclosure is coupled to the base, and a printed circuit board is disposed within the thermally conductive enclosure. The printed circuit board is operably electrically connected with the base and the electrical connector and thermally coupled to the enclosure. An LED is disposed on an exterior surface of the housing and electrically coupled to the printed circuit board. The thermally conductive enclosure is adapted to mechanically and thermally engage the socket to sink heat generated by the printed circuit board and the light source from the lamp assembly into the socket and an associated reflector.
Abstract:
A non-isolated power supply is configured to receive an input voltage and supply an output voltage, and includes a supply line, a return line, a first semiconductor switch coupled in series in the supply line, and a second semiconductor switch coupled in series in the return line. The first and second semiconductor switches are each configured to operate in an ON state and an OFF state. The differential current sensor is configured to sense differential current between the supply line and the return line. The fault detection logic is coupled to the differential current sensor, the first semiconductor switch, and the second semiconductor switch, and is configured to detect when the differential current exceeds a predetermined current magnitude, and command the first and second semiconductor switches to operate in the OFF state upon detecting that the differential current exceeds the predetermined current magnitude.
Abstract:
A landing marker area light system includes a housing, a first light source, a plurality of second light sources, an optics assembly, a tunable lens, and a controller. The first light source emits a first light beam. The second light sources surround the first light source and each emits a second light beam. The optics assembly receives the first light beam and shapes the first light beam into a first geometric-shaped light beam having a first perimeter. The tunable lens receives the first geometric-shaped light beam and, in response to lens control signals, shapes the first geometric-shaped light beam into a second geometric-shaped light beam having a second perimeter that is different than the first perimeter. The controller supplies the lens control signals to the tunable lens, to thereby control the second perimeter of the second geometric-shaped light beam.
Abstract:
A light emitting diode (LED) lamp assembly includes a base including an electrical connector adapted to electrically engage a socket. A thermally conductive enclosure is coupled to the base, and a printed circuit board is disposed within the thermally conductive enclosure. The printed circuit board is operably electrically connected with the base and the electrical connector and thermally coupled to the enclosure. An LED is disposed on an exterior surface of the housing and electrically coupled to the printed circuit board. The thermally conductive enclosure is adapted to mechanically and thermally engage the socket to sink heat generated by the printed circuit board and the light source from the lamp assembly into the socket and an associated reflector.
Abstract:
A single-stage power factor corrected light emitting diode (LED) driver circuit having a circuit input node, a circuit output node, and a circuit common node includes a first inductor, a second inductor, a coupling capacitor, a controllable switch, and an LED string. The first inductor is electrically connected in series between the circuit input node and the coupling capacitor, the second inductor is electrically connected in series between the circuit output node and the circuit common node, the coupling capacitor is electrically connected in series between the first inductor and the circuit output node, the controllable switch is electrically connected in series between a first internal circuit node and the circuit common node, the first internal circuit node located between the first inductor and the coupling capacitor, and the LED string is electrically connected in parallel with only the second inductor.
Abstract:
A spherical electromagnetic machine includes a spherical stator, a plurality of longitudinal slots, a plurality of latitudinal slots, a plurality of longitudinal coils, a plurality of latitudinal coils, a first hemispherical shell rotor, and a second hemispherical shell rotor. The longitudinal slots and latitudinal slots are formed in, and are spaced evenly around, the outer surface. The longitudinal coils are disposed within a different one of the longitudinal slots. The latitudinal coils are disposed within a different one of the latitudinal slots. The first and second hemispherical shell rotors are mounted for rotation relative to the spherical stator body and have magnets on their inner surfaces. A Lorentz force causes movement of the first and second hemispherical shell rotors when electrical current is supplied to one or more of the longitudinal coils or to one or more of the latitudinal coils.
Abstract:
A single-ended primary-inductor converter (SEPIC) circuit has at least a circuit input node and a circuit common node, and includes an inductor, a first coupling capacitor, an isolation transformer, a controllable switch, a second coupling capacitor, and a clamp diode. The inductor is electrically connected in series between the circuit input node and the first coupling capacitor. The first coupling capacitor is connected in series between the inductor and the first primary input terminal. The controllable switch is electrically connected in series between an internal circuit node and the circuit common node, and the internal circuit node is located between the inductor and the first coupling capacitor. The second coupling capacitor is electrically connected in series between the second primary input terminal and the circuit common node. The clamp diode is electrically connected in series between the internal circuit node and the second primary input terminal.