Abstract:
An obstacle advisory system for a vehicle and a method for operating the same are provided. The system, for example, may include, but is not limited to a display, and a processor communicatively coupled to the display, the processor configured to receive sensor data from at least one sensor configured to sense obstacles around a vehicle, generate obstacle display data based upon the sensor data, the obstacle display data comprising display data for each of a plurality of sectors and for each of a plurality of blocks within each of the plurality of sectors forming a grid surrounding the vehicle, and display the generated obstacle display data on the display.
Abstract:
A camera-based obstacle detection system includes a first camera, a second camera, and one or more processors configured to acquire a first image from the first camera, acquire a second image from the second camera, determine a depth of an object based on a location of the object in the first image relative to a location of the object in the second image, and in response to the depth exceeding a threshold depth value, generate an alert.
Abstract:
A helicopter collision-avoidance system is disclosed. An exemplary system includes at least one lamp, such as a light emitting diode (LED) lamp, an incandescent lamp, a halogen lamp, an infrared lamp, or the like; a radar emitter configured to emit a radar signal; a radar detector configured to receive a radar return signal associated with reflections of the emitted radar signal that are reflected from an object; and a radio frequency (RF) system configured to wirelessly transmit radar information associated with the received radar return signal to a radar information receiver configured to receive the wirelessly transmitted radar information. The light module is located at one of a plurality of light positions on an external surface of a helicopter.
Abstract:
An obstacle advisory system for a vehicle and a method for operating the same are provided. The system, for example, may include, but is not limited to a display, and a processor communicatively coupled to the display, the processor configured to receive sensor data from at least one sensor configured to sense obstacles around a vehicle, generate obstacle display data based upon the sensor data, the obstacle display data comprising display data for each of a plurality of sectors and for each of a plurality of blocks within each of the plurality of sectors forming a grid surrounding the vehicle, and display the generated obstacle display data on the display.
Abstract:
A camera-based obstacle detection system includes a first camera, a second camera, and one or more processors configured to acquire a first image from the first camera, acquire a second image from the second camera, determine a depth of an object based on a location of the object in the first image relative to a location of the object in the second image, and in response to the depth exceeding a threshold depth value, generate an alert.
Abstract:
A helicopter collision-avoidance system is disclosed. An exemplary system includes at least one lamp, such as a light emitting diode (LED) lamp, an incandescent lamp, a halogen lamp, an infrared lamp, or the like; a radar emitter configured to emit a radar signal; a radar detector configured to receive a radar return signal associated with reflections of the emitted radar signal that are reflected from an object; and a radio frequency (RF) system configured to wirelessly transmit radar information associated with the received radar return signal to a radar information receiver configured to receive the wirelessly transmitted radar information. The light module is located at one of a plurality of light positions on an external surface of a helicopter.