Abstract:
A method for switching a bulk acoustic device is disclosed. The bulk acoustic device has a substrate, a first electrode, a second electrode, and a piezoelectric film between the first and the second electrode. Switching is obtained by controlling the polarization of the piezoelectric. film, through application of a DC voltage difference to the first and second electrodes. Therefore, no additional switches are needed to direct and control the RF signals passing through the device.
Abstract:
A piezoelectric switch for tunable electronic components comprises piezoelectric layers, metal electrodes alternated with the layers and contact pads. Cross voltages are applied to the electrodes, in order to obtain an S-shaped deformation of the switch and allow contact between the contact pads. Additionally, a further electrode can be provided on a substrate where the switch is fabricated, to allow an additional electrostatic effect during movement of the piezoelectric layers to obtain contact between the contact pads. The overall dimensions of the switch are very small and the required actuation voltage is very low, when compared to existing switches.
Abstract:
A process for fabricating monolithic membrane structures having air gaps is disclosed, comprising the steps of: providing a wafer; depositing and patterning a protective layer on the wafer; providing a trench in the wafer; depositing and patterning a metal in the trench; depositing and patterning a sacrificial layer on the metal; depositing and patterning a membrane pad on the sacrificial layer; providing a polymeric film on the protective layer and sacrificial layer, wherein part of the polymeric film has a tensile stress; and releasing part of the polymeric film from the protective layer and sacrificial layer, wherein the tensile stress of a portion of the polymeric film releases the portion of the polymeric film from the wafer and generates the air gap.
Abstract:
A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
Abstract:
An actuating assembly for tuning a circuit and a process for forming a carrier substrate containing a membrane, a conductive layer, and piezoelectric actuators are disclosed. The actuating assembly comprises a membrane overlying a circuit to be tuned, a conductive element connected with the membrane, and a piezoelectric arrangement. Changes in shape of the piezoelectric arrangement allow a deflection of the membrane and a corresponding controllable upward or downward movement of the conductive element. In the process, a membrane and a piezoelectric structure are formed on a substrate.