Abstract:
The present invention discloses a service transmission method, a network device, and a network system. The method includes: obtaining, by a first network device, a client service of FlexE, and obtaining clock information corresponding to the client service; mapping, by the first network device, the client service and the clock information to a timeslot of a FlexE frame, where the client service and the clock information occupy a same timeslot and/or different timeslots; and sending, by the first network device, the FlexE frame to a second network device. Therefore, service clock information can be transparently transmitted in flexible Ethernet by using the method of the present invention.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal, and relate to the field of communications technologies. The method includes: mapping the client signal into channels of a parallel transmission frame, where the parallel transmission frame includes at least two channels; adding an overhead for the channels of the parallel transmission frame after the mapping, to form transmission channels of the parallel transmission frame, where bit rates of the transmission channels of the parallel transmission frame are fixed; and modulating the transmission channels of the parallel transmission frame onto one or more optical carriers in a same optical fiber, and transmitting the optical carrier after the modulation.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal, and relate to the field of communications technologies. The method includes: mapping the client signal into channels of a parallel transmission frame, where the parallel transmission frame includes at least two channels; adding an overhead for the channels of the parallel transmission frame after the mapping, to form transmission channels of the parallel transmission frame, where bit rates of the transmission channels of the parallel transmission frame are fixed; and modulating the transmission channels of the parallel transmission frame onto one or more optical carriers in a same optical fiber, and transmitting the optical carrier after the modulation.
Abstract:
Embodiments of the present disclosure disclose an active optical antenna, a microwave transmitting system and an information sending method. The active optical antenna includes: a substrate; a ground disposed at the bottom of the substrate; a power supply grid and several antenna units that are disposed at the top of the substrate, and photodetector tubes that are disposed in the substrate and located between the antenna units and the ground, where the power supply grid supplies power to the photodetector tubes, the number of the photodetector tubes is equal to the number of the antenna units, and output ends of the photodetector tubes are coupled with the antenna units to output radio frequency signals; and optical waveguides which are disposed in the substrate and connected to the photodetector tubes.
Abstract:
Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
The present invention provides a method, which including: determining, by a first node, an adjustment requirement for a line interface rate; and according to the adjustment requirement for the line interface rate, adjusting, by the first node, a transport bandwidth of an optical channel (OCh) link, adjusting the number of optical channel transport lanes (OTLs) in an optical channel transport unit (OTUCn) link, and adjusting the number of optical channel data lanes (ODLs) in an optical channel data unit (ODUCn) link, where the OTL is in one-to-one correspondence with the ODL. In embodiments of the present invention, according to an adjustment requirement for a line interface rate, a transport bandwidth of an OCh link is adjusted, the number of OTLs in an OTUCn link is adjusted, and the number of ODLs in an ODUCn link is adjusted, so that the line interface rate can be dynamically adjusted.
Abstract:
Method and apparatus for transporting client signals in an MN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
Embodiments of the present invention disclose a method for generic mapping procedure (GMP) mapping, which includes: first the information about a adjusted time slot to be occupied by a second GMP block container is carried in the GMP overhead of a first GMP block container; then, the size of the second GMP block container is adjusted in accordance with the inforamtion; eventually, a client signal is mapped into the adjusted second GMP block container adopting a GMP scheme. This GMP mapping method, when working with a corresponding demapping method, provides lossless mapping and demapping of client signals during the process of bandwidth adjusting.