Abstract:
Embodiments of the present disclosure provide a method, an apparatus, and a system for authenticating a fully homomorphic message, where the method includes: acquiring a message authentication key, where: the message authentication key includes a public key, a first character string, and a second character string; the first character string is a character string that consists of 0 and 1 and has a length of n; the second character string is a character string that consists of 0 and 1 and has a length of n; generating an authentication fingerprint corresponding to each bit of to-be-computed data; sending a computation request to a server; receiving an authentication fingerprint corresponding to the computation result; and performing correctness authentication on the computation result according to the received authentication fingerprint, which effectively reduces an amount of computation in a verification process.
Abstract:
A synchronous rectification converter circuit is provided, including three transformer secondary-windings, three current transformers, a synchronous rectification switching circuit, a diode rectification circuit, and a control circuit. Each of three current transformers includes a primary-winding and secondary-winding. The three transformer secondary-windings and the three current transformer primary-windings are alternately connected in series to form a first triangular structure circuit. Three vertices of the first triangular structure circuit are connected to the synchronous rectification switching circuit. The three current transformer secondary-windings are connected in series to form a second triangular structure circuit. Three vertices of the second triangular structure circuit are connected to the diode rectification circuit. The diode rectification circuit is connected to the control circuit and the synchronous rectification switching circuit is connected to the control circuit.
Abstract:
The present invention provides a synchronous rectification converter circuit, including three transformer secondary-windings, three current transformer, a synchronous rectification switching unit, a diode rectification unit, and a control unit. Each of three current transformers includes a primary-winding and secondary-winding. The three transformer secondary-windings and the three current transformer primary-windings are alternately connected in series to form a first triangular structure. Three vertices of the first triangular structure are connected to the synchronous rectification switching unit. The three current transformer secondary-windings are connected in series to form a second triangular structure. Three vertices of the second triangular structure are connected to the diode rectification unit. The diode rectification unit is connected to the control unit and the synchronous rectification switching unit is connected to the control unit. The present invention achieves a purpose of precisely controlling the on-off state of the synchronous rectification circuit.
Abstract:
A bridgeless power factor correction (PFC) circuit, which includes an alternating current power supply module, a power module, and a control module; the power module includes one or more interleaved PFC circuits, each interleaved PFC circuit includes one inductor, one pair of first switching components, and at least one capacitor, a first end of the inductor is connected to the alternating current power supply module, and a second end of the inductor is connected to one end of each capacitor through one of the first switching components and is also connected to the other end of each capacitor through the other one of the first switching components; and the control module samples a current of each first switching component in the power module, and turns off a first switching component through which a negative current flows.
Abstract:
A synchronous rectifier control circuit an includes a current transformer (CT), a bridge rectifier, and a comparator, where the CT is connected in series to a secondary side, performs sampling on a loop current of the secondary side to obtain a current detection signal, and outputs the obtained current detection signal to the bridge rectifier; the bridge rectifier acquires a secondary-side sampling current according to the current detection signal, and outputs the secondary-side sampling current to the comparator so that the comparator generates a voltage difference; and an output signal of the comparator turns over so as to control on and off of a synchronous rectifier transistor. In this way, high-speed and high-precision control over a synchronous rectifier transistor can be implemented. The control is simple and is low in cost.
Abstract:
A bridgeless power factor correction (PFC) circuit, which includes an alternating current power supply module, a power module, and a control module; the power module includes one or more interleaved PFC circuits, each interleaved PFC circuit includes one inductor, one pair of first switching components, and at least one capacitor, a first end of the inductor is connected to the alternating current power supply module, and a second end of the inductor is connected to one end of each capacitor through one of the first switching components and is also connected to the other end of each capacitor through the other one of the first switching components; and the control module samples a current of each first switching component in the power module, and turns off a first switching component through which a negative current flows.
Abstract:
A synchronous rectifier control circuit an includes a current transformer (CT), a bridge rectifier, and a comparator, where the CT is connected in series to a secondary side, performs sampling on a loop current of the secondary side to obtain a current detection signal, and outputs the obtained current detection signal to the bridge rectifier; the bridge rectifier acquires a secondary-side sampling current according to the current detection signal, and outputs the secondary-side sampling current to the comparator so that the comparator generates a voltage difference; and an output signal of the comparator turns over so as to control on and off of a synchronous rectifier transistor. In this way, high-speed and high-precision control over a synchronous rectifier transistor can be implemented. The control is simple and is low in cost.
Abstract:
A hold-up time circuit is provided, including: an energy storage capacitor, a step-down circuit and a step-up circuit. A first and a second input end of the step-down circuit are connected to two electrodes of an input power supply. A first output end and a second output end of the step-down circuit are connected to two electrodes of the energy storage capacitor. When the input power supply is normal, the step-down circuit is configured to perform reduction processing on an input voltage of the input power supply, and the energy storage capacitor is charged by an output of the step-down circuit. A first and a second input end of the step-up circuit are connected to the two electrodes of the energy storage capacitor. When the input power supply is power-off, the step-up circuit is configured to perform boost processing on an energy storage voltage of the energy storage capacitor.