摘要:
A semiconductor-based Raman ring amplifier is disclosed. A method according to aspects of the present invention includes directing a pump optical beam having a pump wavelength and an input pump power level from an optical waveguide into a ring resonator. The optical waveguide and ring resonator are comprised in semiconductor material. A signal optical beam having a signal encoded thereon at a signal wavelength is directed from the optical waveguide into the ring resonator. The pump optical beam is resonated within the ring resonator to increase a power level of the pump optical beam to a power level sufficient to amplify the signal optical beam via stimulated Raman scattering (SRS) within the ring resonator. A free carrier concentration in the optical waveguide and the ring resonator is reduced to reduce attenuation of the pump optical beam and the signal beam.
摘要:
A semiconductor-based Raman ring amplifier is disclosed. A method according to aspects of the present invention includes directing a pump optical beam having a pump wavelength and an input pump power level from an optical waveguide into a ring resonator. The optical waveguide and ring resonator are comprised in semiconductor material. A signal optical beam having a signal encoded thereon at a signal wavelength is directed from the optical waveguide into the ring resonator. The pump optical beam is resonated within the ring resonator to increase a power level of the pump optical beam to a power level sufficient to amplify the signal optical beam via stimulated Raman scattering (SRS) within the ring resonator. A free carrier concentration in the optical waveguide and the ring resonator is reduced to reduce attenuation of the pump optical beam and the signal beam.
摘要:
An optical modulator or switch is disclosed. An apparatus includes an optical splitter disposed in a semiconductor material that splits an optical beam having a first wavelength into first and second portions. The first and second portions of the optical beam are to be directed through first and second optical waveguides, respectively. The first optical waveguide is also optically coupled to receive a pump optical beam to amplify and phase shift the first portion of the optical beam. A diode structure is disposed in the first optical waveguide and is selectively biased to sweep out free carriers from the first optical waveguide generated in response to two photon absorption in the optical waveguide. An optical coupler is disposed in the semiconductor material and is optically coupled to the first and second optical waveguides to combine the first and second portions of the optical beam.
摘要:
A semiconductor-based Raman ring amplifier is disclosed. A method according to aspects of the present invention includes directing a pump optical beam having a pump wavelength and an input pump power level from an optical waveguide into a ring resonator. The optical waveguide and ring resonator are comprised in semiconductor material. A signal optical beam having a signal encoded thereon at a signal wavelength is directed from the optical waveguide into the ring resonator. The pump optical beam is resonated within the ring resonator to increase a power level of the pump optical beam to a power level sufficient to amplify the signal optical beam via stimulated Raman scattering (SRS) within the ring resonator. A free carrier concentration in the optical waveguide and the ring resonator is reduced to reduce attenuation of the pump optical beam and the signal beam.
摘要:
A semiconductor-based Raman ring amplifier is disclosed. A method according to aspects of the present invention includes directing a pump optical beam having a pump wavelength and an input pump power level from an optical waveguide into a ring resonator. The optical waveguide and ring resonator are comprised in semiconductor material. A signal optical beam having a signal encoded thereon at a signal wavelength is directed from the optical waveguide into the ring resonator. The pump optical beam is resonated within the ring resonator to increase a power level of the pump optical beam to a power level sufficient to amplify the signal optical beam via stimulated Raman scattering (SRS) within the ring resonator. A free carrier concentration in the optical waveguide and the ring resonator is reduced to reduce attenuation of the pump optical beam and the signal beam.
摘要:
A semiconductor based Raman laser and/or amplifier with reduced two-photon absorption generated carrier lifetimes. An apparatus according to embodiments of the present invention includes optical waveguide disposed in semiconductor material and a diode structure disposed in the optical waveguide. The optical waveguide is to be coupled to a pump laser to receive a first optical beam having a first wavelength and a first power level to result in emission of a second optical beam of a second wavelength in the semiconductor waveguide. The diode structure is to be biased to sweep out free carriers from the optical waveguide generated in response to two photon absorption in the optical waveguide.
摘要:
A semiconductor-based all optical wavelength converter is disclosed. An apparatus according to aspects of the present invention includes an optical waveguide disposed in semiconductor material. An optical pump source is optically coupled to direct an optical pump beam having a first wavelength into the optical waveguide. The optical waveguide is further optically coupled to receive an input optical beam having a second wavelength. The optical waveguide is optically coupled to generate an output optical beam having a third wavelength in response to the optical pump beam and the input optical beam in the optical waveguide. A diode structure is disposed in the optical waveguide. The diode structure includes at least P and N regions. The diode structure is biased to generate an electric field to remove free carriers from an optical path through the optical waveguide generated in response to two photon absorption in the optical waveguide.
摘要:
Instead of monitoring the optical power coming out of a waveguide, a direct method of monitoring the optical power inside the waveguide without affecting device or system performance is provided. A waveguide comprises a p-i-n structure which induces a TPA-generated current and may be enhanced with reverse biasing the diode. The TPA current may be measured directly by probing metal contacts provided on the top surface of the waveguide, and may enable wafer-level testing. The p-i-n structures may be implemented at desired points throughout an integrated network, and thus allows probing of different devices for in-situ power monitor and failure analysis.
摘要:
Embodiments of a method comprising guiding an optical mode with an optical waveguide disposed in silicon, overlapping both the optical waveguide and an active semiconductor material evanescently coupled to the optical waveguide with the optical mode guided through the optical waveguide, electrically pumping the active semiconductor material to inject current directed through the active semiconductor material and through the optical mode, and generating light in the active semiconductor material in response to the injected current. Other embodiments are disclosed and claimed.
摘要:
An apparatus and method electrically pumping a hybrid evanescent laser. For one example, an apparatus includes an optical waveguide disposed in silicon. An active semiconductor material is disposed over the optical waveguide defining an evanescent coupling interface between the optical waveguide and the active semiconductor material such that an optical mode to be guided by the optical waveguide overlaps both the optical waveguide and the active semiconductor material. A current injection path is defined through the active semiconductor material and at least partially overlapping the optical mode such that light is generated in response to electrical pumping of the active semiconductor material in response to current injection along the current injection path at least partially overlapping the optical mode.