摘要:
A laser chip having a substrate, an epitaxial structure on the substrate, the epitaxial structure including an active region and the active region generating light, a waveguide formed in the epitaxial structure extending in a first direction, the waveguide having a front etched facet and a back etched facet that define an edge-emitting laser, and a first recessed region formed in the epitaxial structure, the first recessed region being arranged at a distance from the waveguide and having an opening adjacent to the back etched facet, the first recessed region facilitating testing of an adjacent laser chip prior to singulation of the laser chip.
摘要:
A nitride semiconductor light emitting device includes a first coat film of aluminum nitride or aluminum oxynitride formed at a light emitting portion and a second coat film of aluminum oxide formed on the first coat film. The thickness of the second coat film is at least 80 nm and at most 1000 nm. Here, the thickness of the first coat film is preferably at least 6 nm and at most 200 nm.
摘要:
An integrated circuit includes an optical reflector with one or two bus optical waveguides and a one-dimensional, photonic crystal nanobeam cavity to provide single-mode reflection with a narrow bandwidth. In particular, the nanobeam cavity may be implemented on a nanobeam-cavity optical waveguide (such as a channel or ridge optical waveguide), which is optically coupled to the one or two bus optical waveguides. The nanobeam-cavity optical waveguide may include notches along a symmetry axis of the nanobeam-cavity optical waveguide that are partially etched from edges of the nanobeam-cavity optical waveguide toward a center of the nanobeam-cavity optical waveguide. Furthermore, a fill factor of the notches may vary as a function of location along the symmetry axis, while a pitch of the notches is unchanged, to define the nanobeam cavity.
摘要:
A nitride semiconductor light emitting device includes a first coat film of aluminum nitride or aluminum oxynitride formed at a light emitting portion and a second coat film of aluminum oxide formed on the first coat film. The thickness of the second coat film is at least 80 nm and at most 1000 nm. Here, the thickness of the first coat film is preferably at least 6 nm and at most 200 nm.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer and a laser resonator. The first semiconductor layer includes a first portion and a second portion juxtaposed with the first portion. The laser resonator is provided on the first portion and has a ring-shaped resonator structure circled along a major surface of the first semiconductor layer. The second portion guides light emitted from the laser resonator.
摘要:
The present invention is aimed to prevent occurrence of COD and rapid degradation of light output in semiconductor laser devices. The semiconductor laser device includes a semiconductor laser element 100A and a support member 200. The semiconductor laser element 100a includes a first electrode 13, a substrate 11, and a semiconductor structure 12 having an emitting facet and a reflecting facet, a second electrode 15, and a pad 16, in this order. The semiconductor laser element 100A is connected to a support member 200 at its pad 16 side via a connecting member 300. The emitting-side end portion of the second electrode 15 is spaced apart from the emitting facet of the semiconductor structure 12, and the emitting-side end portion of the pad 16 is located at an outer side than the emitting-side end portion the second electrode 15.
摘要:
A laser chip having a substrate, an epitaxial structure on the substrate, the epitaxial structure including an active region and the active region generating light, a waveguide formed in the epitaxial structure extending in a first direction, the waveguide having a front etched facet and a back etched facet that define an edge-emitting laser, and a first recessed region formed in said epitaxial structure, the first recessed region being arranged at a distance from the waveguide and having an opening adjacent to the back etched facet, the first recessed region facilitating testing of an adjacent laser chip prior to singulation of the laser chip.
摘要:
Injection emitters (light-emitting diodes, superluminescent emitters) are used in the form of highly-efficient solid state radiation sources within a large wavelength range and for wide field of application, including general illumination using white light emitters provided with light-emitting diodes. Said invention also relates to superpower highly-efficient and reliable injection surface-emitting lasers, which generate radiation in the form of a plurality of output beams and which are characterized by a novel original and efficient method for emitting the radiation through the external surfaces thereof.
摘要:
A convex part formation method of forming a convex part in parallel with a direction of a backing on the backing having a {100} face as the top surface thereof, includes: (a) forming a mask layer in parallel with the direction on the backing; (b) etch the backing so as to form a convex-part upper layer whose sectional shape on a cutting plane corresponding to a {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of θU; and (c) further etching the backing so as to form a convex-part lower layer whose sectional shape on the cutting plane corresponding to the {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of θD (where θD≠θU).
摘要:
This semiconductor laser device has the same structure as the conventional broad-area type semiconductor laser device, except that both side regions of light emission areas of active and clad layers are two-dimensional-photonic-crystallized. The two-dimensional photonic crystal formed on both side regions of the light emission area is the crystal having the property that 780 nm laser light cannot be wave-guided in a resonator direction parallel to a striped ridge within the region. The light traveling in the direction can exist only in the light emission area sandwiched between two photonic crystal regions, which results in the light laterally confined by the photonic crystal region. The optical confinement of the region suppresses the loss in the light at both edges of the stripe serving as the boundary of the optical confinement, which reduces the curve of wave surface and uniforms the light intensity distributions of NFP and FFP.