摘要:
In order to realize a method and an apparatus, each of which requires no contact treatment and no chemical reaction, for separating isomers of a chiral substance by irradiating a chiral substance with light such as circularly polarized light, so as to separate isomers in accordance with a difference in acceleration between the isomers, separation of isomers of a chiral substance in accordance with at least one embodiment of the present invention includes: (i) a circularly polarized light irradiating apparatus for irradiating, with circularly polarized light, a chiral substance which is a mixture of different isomers and is released from a molecular beam generating apparatus in a vacuum chamber; and (ii) isomer inlets for separating the different isomers of the chiral substance in accordance with a difference in acceleration between the different isomers.
摘要:
A quantum dot manipulating method and a generation/manipulation apparatus are provided which can control the size of a large number of generated quantum dots on or below the order of percent which is required for optical applications of the dots.Quantum dots are generated by shining a dot production laser (4a) onto a solid object (3) in a quantum dot production/manipulation apparatus (1) containing superfluid helium (7) therein. A dot manipulation laser (5a) is shone onto the generated quantum dots to manipulate the quantum dots.
摘要:
A quantum dot manipulating method and a generation/manipulation apparatus are provided which can control the size of a large number of generated quantum dots on or below the order of percent which is required for optical applications of the dots. Quantum dots are generated by shining a dot production laser (4a) onto a solid object (3) in a quantum dot production/manipulation apparatus (1) containing superfluid helium (7) therein. A dot manipulation laser (5a) is shone onto the generated quantum dots to manipulate the quantum dots.
摘要:
Light resonant with an electronic excitation level of nanosize objects is projected onto a plurality of closely located nanosize objects, such as quantum dots, quantum dot pairs, and a carbon nanotube, in a collection of nanosize objects is disclosed. In so doing, to control the mechanical interaction induced between the nanosize objects, the projected resonant light is changed in polarization. This enables the collective manipulation of the nanosize objects.
摘要:
A quantum dot manipulating method and a generation/manipulation apparatus are provided which can control the size of a large number of generated quantum dots on or below the order of percent which is required for optical applications of the dots.Quantum dots are generated by shining a dot production laser (4a) onto a solid object (3) in a quantum dot production/manipulation apparatus (1) containing superfluid helium (7) therein. A dot manipulation laser (5a) is shone onto the generated quantum dots to manipulate the quantum dots.
摘要:
In order to realize a method and an apparatus, each of which requires no contact treatment and no chemical reaction, for separating isomers of a chiral substance by irradiating a chiral substance with light such as circularly polarized light, so as to separate isomers in accordance with a difference in acceleration between the isomers, separation of isomers of a chiral substance in accordance with at least one embodiment of the present invention includes: (i) a circularly polarized light irradiating apparatus for irradiating, with circularly polarized light, a chiral substance which is a mixture of different isomers and is released from a molecular beam generating apparatus in a vacuum chamber; and (ii) isomer inlets for separating the different isomers of the chiral substance in accordance with a difference in acceleration between the different isomers.
摘要:
A quantum dot manipulating method and a generation/manipulation apparatus are provided which can control the size of a large number of generated quantum dots on or below the order of percent which is required for optical applications of the dots.Quantum dots are generated by shining a dot production laser (4a) onto a solid object (3) in a quantum dot production/manipulation apparatus (1) containing superfluid helium (7) therein. A dot manipulation laser (5a) is shone onto the generated quantum dots to manipulate the quantum dots.
摘要:
Light resonant with an electronic excitation level of nanosize objects is projected onto a plurality of closely located nanosize objects, such as quantum dots, quantum dot pairs, and a carbon nanotube, in a collection of nanosize objects is disclosed. In so doing, to control the mechanical interaction induced between the nanosize objects, the projected resonant light is changed in polarization. This enables the collective manipulation of the nanosize objects.
摘要:
The present invention provides a battery pack which is capable of enhancing a short-circuit prevention effect, and electronic equipment using this battery pack. The battery pack 31 has a battery built in the case 32 and an output terminal 47 which is electrically connected to the battery and provided in such a manner as directed towards the outside of the case 32. The battery pack 31 has an output section 34 that is provided in orthogonal to a virtual plane including a mount reference plane for the electronic equipment (under surface 33B) of the case 32, with a space between the virtual plane and the output section 34 . The output section 34 is provided with an output terminal 47.
摘要:
A photon pair generating device capable of further increasing generation efficiency of a correlation photon pair is provided, the photon pair generating device generating the correlation photon pair by a hyper-parametric scattering. A quantum well (4) is provided in a resonator (2). An incident light radiated from a light source (6) to the resonator (2) resonates therein and becomes a particular resonator mode. The generation efficiency of the correlation photon pair by the hyper-parametric scattering in the quantum well 4 is enhanced by disposing the quantum well (4) in a position where electric field strength of the light becomes higher by this resonator mode.