Abstract:
The present invention relates to a compressor having a cylinder block having a center bore piercedly formed at the center thereof and cylinder bores piercedly formed around the center bore, a front housing and a rear housing mounted on both ends of the cylinder block, a driving shaft rotatably passing through the front housing and the center bore, and pistons linearly reciprocating in the cylinder bores with the power received from the driving shaft to compress a refrigerant. The compressor includes a permanent magnet disposed on either of the pistons or the cylinder block and coil parts provided to the other part, wherein power generation is conducted by means of the electromagnetic induction produced by the motions of the pistons.
Abstract:
Disclosed are a heat exchanger and a method of manufacturing a heat exchanger. The heat exchanger may include a plurality of three-step tubes, each having a three-layered section and each having a liquid passage at a middle portion and module insertion spaces at opposite sides of the liquid passage, a plurality of thermoelectric modules inserted into the module insertion spaces, a plurality of cooling fins coupled to an outer surface of each of the three-step tubes, and an upper tank and a lower tank coupled to an upper side and a lower side of the three-step tubes to be fluidically communicated with the liquid passages of the three-step tubes. The three-step tubes and the cooling fins may be stacked laterally with respect to each other. The three-step tubes, the cooling fins, the upper tank, and the lower tank may be brazed by a same filler material comprising a metal.
Abstract:
Disclosed are a heat exchanger and a method of manufacturing a heat exchanger. The heat exchanger may include a plurality of three-step tubes, each having a three-layered section and each having a liquid passage at a middle portion and module insertion spaces at opposite sides of the liquid passage, a plurality of thermoelectric modules inserted into the module insertion spaces, a plurality of cooling fins coupled to an outer surface of each of the three-step tubes, and an upper tank and a lower tank coupled to an upper side and a lower side of the three-step tubes to be fluidically communicated with the liquid passages of the three-step tubes. The three-step tubes and the cooling fins may be stacked laterally with respect to each other. The three-step tubes, the cooling fins, the upper tank, and the lower tank may be brazed by a same filler material comprising a metal.