摘要:
A method for manufacturing a magnetic read sensor at very narrow track widths. The method uses an amorphous carbon mask layer to pattern the sensor by ion milling, rather than a mask constructed of a material such as photoresist or DURIMIDE® which can bend over during ion milling at very narrow track widths. By using the amorphous carbon layer as the masking layer, the trackwidth can be very small, while avoiding this bending over of the mask that has been experienced with prior art methods. In addition, the track-width can be further reduced by using a reactive ion etching to further reduce the width of the amorphous carbon mask prior to patterning the sensor. The method also allows extraneous portions of the side insulation layer and hard bias layer to be removed above the sensor by a light CMP process.
摘要:
A method for manufacturing a magnetic read sensor at very narrow track widths. The method uses an amorphous carbon mask layer to pattern the sensor by ion milling, rather than a mask constructed of a material such as photoresist or DURIMIDE® which can bend over during ion milling at very narrow track widths. By using the amorphous carbon layer as the masking layer, the trackwidth can be very small, while avoiding this bending over of the mask that has been experienced with prior art methods. In addition, the track-width can be further reduced by using a reactive ion etching to further reduce the width of the amorphous carbon mask prior to patterning the sensor. The method also allows extraneous portions of the side insulation layer and hard bias layer to be removed above the sensor by a light CMP process.
摘要:
A spin torque oscillator device having a magnetic free layer with a magnetic anisotropy that has a component that is oriented perpendicular to a direction of an applied magnetic field. The spin torque oscillator device includes a magnetic reference layer, a magnetic free layer and a non-magnetic layer sandwiched there-between. A component of the magnetic anisotropy of the free layer can be oriented perpendicular to a magnetization of the reference layer, and this orientation relative to the magnetization of the reference layer can be either in lieu of or in addition to its orientation relative to the applied magnetic field. The magnetic anisotropy cants the magnetization of the free layer which would otherwise be oriented antiparallel with the magnetization of the reference layer. The magnetic anisotropy in the free layer improves performance of the spin torque sensor by reducing noise.
摘要:
A spin torque oscillator device having a magnetic free layer with a magnetic anisotropy that has a component that is oriented perpendicular to a direction of an applied magnetic field. The spin torque oscillator device includes a magnetic reference layer, a magnetic free layer and a non-magnetic layer sandwiched there-between. A component of the magnetic anisotropy of the free layer can be oriented perpendicular to a magnetization of the reference layer, and this orientation relative to the magnetization of the reference layer can be either in lieu of or in addition to its orientation relative to the applied magnetic field. The magnetic anisotropy cants the magnetization of the free layer which would otherwise be oriented antiparallel with the magnetization of the reference layer. The magnetic anisotropy in the free layer improves performance of the spin torque sensor by reducing noise.
摘要:
A spin torque magnetoresistive sensor having a very small gap thickness. The sensor operates by measuring the change in frequency of a spin torque induced magnetic oscillation in magnetic layers of the sensor to detect the presence of a magnetic field. The sensor includes a pair of free magnetic layers that are antiparallel coupled by a thin non-magnetic coupling layer there-between. The sensor does not include a pinned layer structure nor an associated AFM pinning layer, which allows the sensor to be constructed much thinner than prior art sensors.
摘要:
A spin torque magnetoresistive sensor having a very small gap thickness. The sensor operates by measuring the change in frequency of a spin torque induced magnetic oscillation in magnetic layers of the sensor to detect the presence of a magnetic field. The sensor includes a pair of free magnetic layers that are antiparallel coupled by a thin non-magnetic coupling layer there-between. The sensor does not include a pinned layer structure nor an associated AFM pinning layer, which allows the sensor to be constructed much thinner than prior art sensors.